Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
ACS Omega ; 9(26): 27976-27986, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973871

RESUMO

Microalgal lipids contain a wide array of liposoluble bioactive compounds, but lipid extraction remains a critical limitation for their commercial use. An accelerated solvent extraction (ASE) was used to extract lipids from Chlamydomonas reinhardtii, Arthrospira platensis (Spirulina), and Chlorella vulgaris grown under either standard or nitrogen depletion conditions. Under standard growth conditions, ASE using methanol:chloroform (2:1), methyl tert-butyl ether (MTBE):methanol:water, and ethanol at 100 °C resulted in the highest recovery of total lipids (352 ± 30, 410 ± 32, and 127 ± 15 mg/g biomass from C. reinhardtii, C. vulgaris, and A. platensis, respectively). Similarly, the highest total lipid and triacylglycerols (TAGs) recovery from biomass cultivated under nitrogen depletion conditions was found at 100 °C using methanol:chloroform, for C. reinhardtii (total, 550 ± 21; TAG, 205 ± 2 mg/g biomass) and for C. vulgaris (total, 612 ± 29 mg/g; TAG, 253 ± 7 mg/g biomass). ASE with MTBE:methanol:water at 100 °C yielded similar TAG recovery for C. reinhardtii (159 ± 6 mg/g) and C. vulgaris (200 ± 4 mg/g). Thus, MTBE:methanol:water is suggested as an alternative substitute to replace hazardous solvent mixtures for TAGs extraction with a much lower environmental impact. The extracted microalgal TAGs were rich in palmitic (C16:0), stearic (C18:0), oleic (C18:1,9), linoleic (C18:2n6), and α-linolenic (C18:3n3) acids. Under nitrogen depletion conditions, increased palmitic acid (C16:0) recovery up to 2-fold was recorded from the biomasses of C. reinhardtii and C. vulgaris. This study demonstrates a clear linkage between the extraction conditions applied and total lipid and TAG recovery.

3.
PLoS One ; 17(3): e0265576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298558

RESUMO

While high rate algal ponds (HRAPs) can provide efficient pathogen removal from wastewater, the mechanisms involved remain unclear. To address this knowledge gap, the mechanisms potentially causing Escherichia coli (E. coli) removal during microalgae-based wastewater treatment were successively assessed using laboratory microcosms designed to isolate known mechanisms, and bench scale assays performed in real HRAP broth. During laboratory assays, E. coli decay was only significantly increased by alkaline pH (above temperature-dependent thresholds) due to pH induced toxicity, and direct sunlight exposure via UV-B damage and/or endogenous photo-oxidation. Bench assays confirmed alkaline pH toxicity caused significant decay but sunlight-mediated decay was not significant, likely due to light attenuation in the HRAP broth. Bench assays also evidenced the existence of uncharacterized 'dark' decay mechanism(s) not observed in laboratory microcosms. To numerically evaluate the contribution of each mechanism and the uncertainty associated, E. coli decay was modelled assuming dark decay, alkaline pH induced toxicity, and direct sunlight-mediated decay were independent mechanisms. The simulations confirmed E. coli decay was mainly caused by dark decay during bench assays (48.2-89.5% estimated contribution to overall decay at the 95% confidence level), followed by alkaline-pH induced toxicity (8.3-46.5%), and sunlight-mediated decay (0.0-21.9%).


Assuntos
Lagoas , Purificação da Água , Escherichia coli , Lagoas/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química
4.
J Phycol ; 57(3): 988-1003, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33778959

RESUMO

Phosphorus (P) assimilation and polyphosphate (polyP) synthesis were investigated in Chlamydomonas reinhardtii by supplying phosphate (PO43- ; 10 mg P·L-1 ) to P-depleted cultures of wildtypes, mutants with defects in genes involved in the vacuolar transporter chaperone (VTC) complex, and VTC-complemented strains. Wildtype C. reinhardtii assimilated PO43- and stored polyP within minutes of adding PO43- to cultures that were P-deprived, demonstrating that these cells were metabolically primed to assimilate and store PO43- . In contrast, vtc1 and vtc4 mutant lines assayed under the same conditions never accumulated polyP, and PO43- assimilation was considerably decreased in comparison with the wildtypes. In addition, to confirm the bioinformatics inferences and previous experimental work that the VTC complex of C. reinhardtii has a polyP polymerase function, these results evidence the influence of polyP synthesis on PO43- assimilation in C. reinhardtii. RNA-sequencing was carried out on C. reinhardtii cells that were either P-depleted (control) or supplied with PO43- following P depletion (treatment) in order to identify changes in the levels of mRNAs correlated with the P status of the cells. This analysis showed that the levels of VTC1 and VTC4 transcripts were strongly reduced at 5 and 24 h after the addition of PO43- to the cells, although polyP granules were continuously synthesized during this 24 h period. These results suggest that the VTC complex remains active for at least 24 h after supplying the cells with PO43- . Further bioassays and sequence analyses suggest that inositol phosphates may control polyP synthesis via binding to the VTC SPX domain.


Assuntos
Chlamydomonas reinhardtii , Transporte Biológico , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chaperonas Moleculares/metabolismo , Fósforo , Polifosfatos
5.
Water Sci Technol ; 82(6): 1025-1030, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33055393

RESUMO

Microalgae can synthesise the ozone depleting pollutant and greenhouse gas nitrous oxide (N2O). Consequently, significant N2O emissions have been recorded during real wastewater treatment in high rate algal ponds (HRAPs). While data scarcity and variability prevent meaningful assessment, the magnitude reported (0.13-0.57% of the influent nitrogen load) is within the range reported by the Intergovernmental Panel on Climate Change (IPCC) for direct N2O emissions during centralised aerobic wastewater treatment (0.016-4.5% of the influent nitrogen load). Critically, the ability of microalgae to synthesise N2O challenges the IPCC's broad view that bacterial denitrification and nitrification are the only major cause of N2O emissions from wastewater plants and aquatic environments receiving nitrogen from wastewater effluents. Significant N2O emissions have indeed been repeatedly detected from eutrophic water bodies and wastewater discharge contributes to eutrophication via the release of nitrogen and phosphorus. Considering the complex interplays between nitrogen and phosphorus supply, microalgal growth, and microalgal N2O synthesis, further research must urgently seek to better quantify N2O emissions from microalgae-based wastewater systems and eutrophic ecosystems receiving wastewater. This future research will ultimately improve the prediction of N2O emissions from wastewater treatment in national inventories and may therefore affect the prioritisation of mitigation strategies.


Assuntos
Gases de Efeito Estufa , Microalgas , Ecossistema , Óxido Nitroso/análise , Águas Residuárias/análise
6.
Water Sci Technol ; 82(6): 1166-1175, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33055406

RESUMO

Escherichia coli (E. coli) first-order decay rates ranging from 3.34 to 11.9 d-1 (25-75% data range, N = 128) were recorded in two outdoor pilot-scale (0.88 m3) high rate algal ponds (HRAPs) continuously fed primary domestic wastewater over two years (influent E. coli cell count of 4.74·106 ± 3.37·106 MPN·100 mL-1, N = 142). The resulting removal performance was relatively constant throughout the year (log10-removal averaging 1.77 ± 0.54, N = 128), apart from a significant performance drop during a cold rainy period. E. coli removal performance was not strongly correlated to any of the meteorological or operational parameters recorded (e.g. sunlight intensity, pH, temperature). Hourly monitoring of E. coli cell count evidenced that E. coli removal, pH, dissolved oxygen (DO) and pond temperature peaked in the late afternoon of sunny summer days. Such improved daytime removal was, however, not evidenced in spring, even under sunny conditions causing milder increases in pH, DO and temperature. Overall, the data confirm the potential of HRAPs to support efficient E. coli removal during secondary domestic wastewater treatment and suggests E. coli decay was mainly caused by dark mechanisms episodically enhanced by indirect sunlight-mediated mechanisms and/or high pH toxicity.


Assuntos
Lagoas , Águas Residuárias , Escherichia coli , Luz Solar , Eliminação de Resíduos Líquidos
7.
Plants (Basel) ; 9(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708782

RESUMO

Nitrogen (N) is an essential constituent of all living organisms and the main limiting macronutrient. Even when dinitrogen gas is the most abundant form of N, it can only be used by fixing bacteria but is inaccessible to most organisms, algae among them. Algae preferentially use ammonium (NH4+) and nitrate (NO3-) for growth, and the reactions for their conversion into amino acids (N assimilation) constitute an important part of the nitrogen cycle by primary producers. Recently, it was claimed that algae are also involved in denitrification, because of the production of nitric oxide (NO), a signal molecule, which is also a substrate of NO reductases to produce nitrous oxide (N2O), a potent greenhouse gas. This review is focused on the microalga Chlamydomonas reinhardtii as an algal model and its participation in different reactions of the N cycle. Emphasis will be paid to new actors, such as putative genes involved in NO and N2O production and their occurrence in other algae genomes. Furthermore, algae/bacteria mutualism will be considered in terms of expanding the N cycle to ammonification and N fixation, which are based on the exchange of carbon and nitrogen between the two organisms.

8.
Chemosphere ; 180: 33-41, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28391150

RESUMO

This study investigated the removal of antibiotic ciprofloxacin during the treatment of real wastewater using high rate algal ponds (HRAP). When spiked at 2 mg/L into primary domestic wastewater, ciprofloxacin (CPX) was efficiently removed from laboratory scale photobioreactors continuously operated under various durations of artificial illumination and hydraulic residence times. Subsequent batch tests conducted with reactor microcosms showed CPX removal was mainly caused by photodegradation during daytime, and sorption to biomass during night time. These findings were confirmed during an experiment conducted in a 1000 L pilot HRAP operated outdoors, as well as during outdoor batch assays conducted using pilot HRAP microcosms. While these results highlight a potentially interesting treatment capacity in comparison to conventional biological treatment, further research must confirm these findings at relevant pollutant concentration (ng-µg/L) and determine the fate and potential toxicity of degradation products.


Assuntos
Ciprofloxacina/análise , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Biomassa , Ciprofloxacina/metabolismo , Fotólise , Lagoas/química , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
9.
Ecotoxicol Environ Saf ; 140: 141-147, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28254724

RESUMO

In order to develop a rapid assay suitable for algal eco-toxicity assessments under conditions representative of natural ecosystems, this study evaluated the short-term (<1h) response of algae exposed to atrazine and DCMU using oxygen productivity measurements. When Chlorella vulgaris was exposed to these herbicides under 'standard' low light intensity (as prescribed by OECD201 guideline), the 20min-EC50 values recorded via oxygen productivity (atrazine: 1.32±0.07µM; DCMU: 0.31±0.005µM) were similar the 96-h EC50 recorded via algal growth (atrazine: 0.56µM; DCMU: 0.41µM), and within the range of values reported in the literature. 20min-EC50 values increased by factors of 3.0 and 2.1 for atrazine and DCMU, respectively, when light intensity increased from 60 to 1400µmolm-2s-1 of photosynthetically active radiation, or PAR. Further investigation showed that exposure time significantly also impacted the sensitivity of C. vulgaris under high light intensity (>840µmolm-2s-1 as PAR) as the EC50 for atrazine and DCMU decreased by up to 6.2 and 2.1 folds, respectively, after 50min of exposure at a light irradiance of 1400µmolm-2s-1 as PAR. This decrease was particularly marked at high light intensities and low algae concentrations and is explained by the herbicide disruption of the electron transfer chain triggering photo-inhibition at high light intensities. Eco-toxicity assessments aiming to understand the potential impact of toxic compounds on natural ecosystems should therefore be performed over sufficient exposure times (>20min for C. vulgaris) and under light intensities relevant to these ecosystems.


Assuntos
Atrazina/toxicidade , Chlorella vulgaris/efeitos dos fármacos , Diurona/toxicidade , Monitoramento Ambiental/métodos , Luz , Oxigênio/análise , Poluentes Químicos da Água/toxicidade , Chlorella vulgaris/efeitos da radiação , Relação Dose-Resposta a Droga , Ecotoxicologia , Fotossíntese/efeitos dos fármacos , Fatores de Tempo , Testes de Toxicidade/métodos
10.
Plant J ; 91(1): 45-56, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28333392

RESUMO

Over the last decades, several studies have reported emissions of nitrous oxide (N2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO2- ) under aerobic conditions can reduce NO2- into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO3- ) is the main Nitrogen source and the intracellular concentration of NO2- is low (i.e. under physiological conditions), microalgal N2 O synthesis involves the reduction of NO3- to NO2- by NR followed by the reduction of NO2- to NO by the dual system involving NR. This microalgal N2 O pathway has broad implications for environmental science and algal biology because the pathway of NO3- assimilation is conserved among microalgae, and because its regulation may involve NO.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Óxido Nitroso/metabolismo , Chlamydomonas reinhardtii/genética , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
11.
Bioresour Technol ; 232: 35-43, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214443

RESUMO

The degradation of the antibiotic tetracycline, supplied at 100µgL-1 in domestic wastewater, was studied in an outdoor, pilot scale, high rate algal pond (HRAP). Effective operation was demonstrated with the biomass concentration and the chemical oxygen demand removal efficiency averaging 1.2±0.1gTSSL-1 and 80±4%, respectively, across all operational periods. Tetracycline removal exceeded 93% and 99% when the HRAP was operated at hydraulic retention times of 4 and 7days, respectively. Batch tests and pulse testing during HRAP operation repeatedly evidenced the significance of photodegradation as a removal mechanism. Sorption dominated tetracycline removal during the night, but accounted for less than 6% of the total pollutant removal based on sorbed tetracycline extracted from biomass. Overall, these results provide the first demonstration of efficient antibiotic removal, occurring mainly via indirect photodegradation, during relevant HRAP operation (low pollutant concentration, domestic wastewater and natural sunlight).


Assuntos
Microalgas/metabolismo , Fotólise , Lagoas , Tetraciclina/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Antibacterianos/química , Antibacterianos/isolamento & purificação , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Concentração de Íons de Hidrogênio , Fotossíntese , Projetos Piloto , Esgotos/microbiologia , Tetraciclina/química , Fatores de Tempo , Eliminação de Resíduos Líquidos/métodos
12.
J Hazard Mater ; 313: 291-309, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27135171

RESUMO

Whereas the fate of emerging contaminants (ECs) during 'conventional' and 'advanced' wastewater treatment (WWT) has been intensively studied, little research has been conducted on the algal WWT ponds commonly used in provincial areas. The long retention times and large surface areas exposed to light potentially allow more opportunities for EC removal to occur, but experimental evidence is lacking to enable definite predictions about EC fate across different algal WWT systems. This study reviews the mechanisms of EC hydrolysis, sorption, biodegradation, and photodegradation, applying available knowledge to the case of algal WWT. From this basis the review identifies three main areas that need more research due to the unique environmental and ecological conditions occurring in algal WWT ponds: i) the effect of diurnally fluctuating pH and dissolved oxygen upon removal mechanisms; ii) the influence of algae and algal biomass on biodegradation and sorption under relevant conditions; and iii) the significance of EC photodegradation in the presence of dissolved and suspended materials. Because of the high concentration of dissolved organics typically found in algal WWT ponds, most EC photodegradation likely occurs via indirect mechanisms rather than direct photolysis in these systems.


Assuntos
Microalgas/metabolismo , Fotólise , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Biodegradação Ambiental , Biomassa , Lagoas
13.
Environ Sci Technol ; 50(7): 4102-10, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928398

RESUMO

The ability to dynamically control algal raceway ponds to maximize biomass productivity and reduce environmental impacts (e.g., land and water use) with consideration of local constraints (e.g., water availability and climatic conditions) is an important consideration in algal biotechnology. This paper presents a novel optimization strategy that seeks to maximize growth (i.e., optimize land use), minimize respiration losses, and minimize water demand through regular adjustment of pond depth and hydraulic retention time (HRT) in response to seasonal changes. To evaluate the efficiency of this strategy, algal productivity and water demand were simulated in five different climatic regions. In comparison to the standard approach (constant and location-independent depth and HRT), dynamic control of depth and HRT was shown to increase productivity by 0.6-9.9% while decreasing water demand by 10-61% depending upon the location considered (corresponding to a decrease in the water footprint of 19-62%). Interestingly, when the fact that the water demand was limited to twice the local annual rainfall was added as a constraint, higher net productivities were predicted in temperate and tropical climates (15.7 and 16.7 g m(-2) day(-1), respectively) than in Mediterranean and subtropical climates (13.0 and 9.7 g m(-2) day(-1), respectively), while algal cultivation was not economically feasible in arid climates. Using dynamic control for a full-scale operation by adjusting for local climatic conditions and water constraints can notably affect algal productivity. It is clear that future assessments of algal cultivation feasibility should implement locally optimized dynamic process control.


Assuntos
Biotecnologia/métodos , Chlorella/crescimento & desenvolvimento , Meio Ambiente , Lagoas , Biomassa , Respiração Celular , Chlorella/metabolismo , Fotossíntese , Temperatura , Fatores de Tempo , Água
14.
Biotechnol Bioeng ; 112(5): 987-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25502920

RESUMO

A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies.


Assuntos
Chlorella vulgaris/crescimento & desenvolvimento , Fotobiorreatores , Biocombustíveis , Biomassa , Luz , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Oxigênio/metabolismo , Temperatura
15.
Bioresour Technol ; 177: 110-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25481561

RESUMO

This study investigated the generation of N2O by microcosms withdrawn from 7-L high rate algal ponds (HRAPs) inoculated with Chlorella vulgaris and treating synthetic wastewater. Although HRAPs microcosms demonstrated the ability to generate algal-mediated N2O when nitrite was externally supplied under darkness in batch assays, negligible N2O emissions rates were consistently recorded in the absence of nitrite during 3.5-month monitoring under 'normal' operation. Thereafter, HRAP A and HRAP B were overloaded with nitrate and ammonium, respectively, in an attempt to stimulate N2O emissions via nitrite in situ accumulation. Significant N2O production (up to 5685±363 nmol N2O/g TSS h) was only recorded from HRAP B microcosms externally supplied with nitrite in darkness. Although confirmation under full-scale outdoors conditions is needed, this study provides the first evidence that the ability of microalgae to synthesize N2O does not affect the environmental performance of wastewater treatment in HRAPs.


Assuntos
Microalgas/metabolismo , Óxido Nitroso/análise , Lagoas/química , Águas Residuárias/química , Purificação da Água/métodos , Redes e Vias Metabólicas
16.
Environ Sci Technol ; 48(23): 13826-33, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25369326

RESUMO

While modeling algal productivity outdoors is crucial to assess the economic and environmental performance of full-scale cultivation, most of the models hitherto developed for this purpose have not been validated under fully relevant conditions, especially with regard to temperature variations. The objective of this study was to independently validate a model of algal biomass productivity accounting for both light and temperature and constructed using parameters experimentally derived using short-term indoor experiments. To do this, the accuracy of a model developed for Chlorella vulgaris was assessed against data collected from photobioreactors operated outdoor (New Zealand) over different seasons, years, and operating conditions (temperature-control/no temperature-control, batch, and fed-batch regimes). The model accurately predicted experimental productivities under all conditions tested, yielding an overall accuracy of ±8.4% over 148 days of cultivation. For the purpose of assessing the feasibility of full-scale algal cultivation, the use of the productivity model was therefore shown to markedly reduce uncertainty in cost of biofuel production while also eliminating uncertainties in water demand, a critical element of environmental impact assessments. Simulations at five climatic locations demonstrated that temperature-control in outdoor photobioreactors would require tremendous amounts of energy without considerable increase of algal biomass. Prior assessments neglecting the impact of temperature variations on algal productivity in photobioreactors may therefore be erroneous.


Assuntos
Chlorella vulgaris/crescimento & desenvolvimento , Modelos Teóricos , Fotobiorreatores , Técnicas de Cultura Celular por Lotes , Biocombustíveis/economia , Biomassa , Chlorella vulgaris/metabolismo , Simulação por Computador , Meio Ambiente , Luz , Nova Zelândia , Temperatura
17.
J Hazard Mater ; 267: 142-52, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24440651

RESUMO

When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment.


Assuntos
Biodegradação Ambiental , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Águas Residuárias/química , Animais , Humanos , Resíduos Industriais/efeitos adversos , Águas Residuárias/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Purificação da Água
18.
Biotechnol Adv ; 31(8): 1648-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23981914

RESUMO

The ability to model algal productivity under transient conditions of light intensity and temperature is critical for assessing the profitability and sustainability of full-scale algae cultivation outdoors. However, a review of over 40 modeling approaches reveals that most of the models hitherto described in the literature have not been validated under conditions relevant to outdoor cultivation. With respect to light intensity, we therefore categorized and assessed these models based on their theoretical ability to account for the light gradients and short light cycles experienced in well-mixed dense outdoor cultures. Type I models were defined as models predicting the rate of photosynthesis of the entire culture as a function of the incident or average light intensity reaching the culture. Type II models were defined as models computing productivity as the sum of local productivities within the cultivation broth (based on the light intensity locally experienced by individual cells) without consideration of short light cycles. Type III models were then defined as models considering the impacts of both light gradients and short light cycles. Whereas Type I models are easy to implement, they are theoretically not applicable to outdoor systems outside the range of experimental conditions used for their development. By contrast, Type III models offer significant refinement but the complexity of the inputs needed currently restricts their practical application. We therefore propose that Type II models currently offer the best compromise between accuracy and practicability for full scale engineering application. With respect to temperature, we defined as "coupled" and "uncoupled" models the approaches which account and do not account for the potential interdependence of light and temperature on the rate of photosynthesis, respectively. Due to the high number of coefficients of coupled models and the associated risk of overfitting, the recommended approach is uncoupled models. Most of models do not include the modeling of endogenous respiration and the modeling of light and temperature acclimation in spite of their potential effect on productivity.


Assuntos
Clorófitas , Cianobactérias , Luz , Modelos Biológicos , Fotossíntese , Temperatura
19.
J Environ Qual ; 42(3): 654-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673930

RESUMO

The New Zealand Greenhouse Gas Inventory (the NZ Inventory) uses country-specific data to quantify CH emissions from anaerobic ponds treating dairy farm effluent (315 Gg CO equivalent [CO-e] in 2009). In this study, we used literature data to: (i) evaluate the accuracy of the NZ Inventory's parameters used to quantify these CH emissions; and (ii) determine whether the NZ Inventory's scope is capturing the full spectrum of sources with bio-CH potential entering anaerobic ponds. The research indicated that the current NZ Inventory methodology is underestimating CH emissions from anaerobic ponds across New Zealand by 264 to 603 Gg CO-e annually. Moreover, the NZ Inventory is currently not accounting for (i) manure from supplementary feed pads and stand-off pads (annual CH emissions = 207-330 Gg CO-e); (ii) waste milk (153-280 Gg CO-e); and (iii) supplementary feed waste (90-216 Gg CO-e). Annual CH emissions from anaerobic ponds on dairy farms across New Zealand are thus more likely to be 1029 to 1744 Gg CO-e, indicating that the NZ Inventory is reporting as little as 18% of actual CH emissions produced by this sector. These additional wastes are not accounted for in the methodology prescribed by the Intergovernmental Panel on Climate Change for estimating CH emissions from dairy manure. Consequently, other significant dairying nations will also probably be underestimating their waste CH emissions. Our research highlights that, if governments attempt to include country-specific emission factors in their greenhouse gas inventories, these factors must be based on an assessment of the full spectrum of sources contributing to greenhouse gas emissions within any given sector.


Assuntos
Mudança Climática , Efeito Estufa , Animais , Dióxido de Carbono , Indústria de Laticínios , Esterco , Metano , Leite/química
20.
Biotechnol Bioeng ; 110(1): 118-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22767101

RESUMO

Temperature-tolerant Chlorella sorokiniana was cultivated in a 51-L column photobioreactor with a 1.1 m(2) illuminated area. The reactor was operated outdoors under tropical meteorological conditions (Singapore) without controlling temperature and the culture was mixed at a power input of 7.5 W/m(3) by sparging CO(2) -enriched air at 1.2 L/min (gas hold-up of 0.02). Biomass productivity averaged 10 ± 2.2 g/m(2) -day over six batch studies, yielding an average photosynthetic efficiency (PE) of 4.8 ± 0.5% of the total solar radiation (P = 0.05, N = 6). This demonstrates that temperature-tolerant microalgae can be cultivated at high PE under a mixing input sevenfold to ninefold lower than current operational guidelines (50-70 W/m(3)) and without the need for temperature control (the culture broth temperature reached 41 °C during operation). In this study, the PE value was determined based on the amount of solar radiation actually reaching the algae and this amount was estimated using a mathematical model fed with onsite solar irradiance data. This determination was found to be particularly sensitive to the value of the atmospheric diffusion coefficient, which generated a significant uncertainty in the PE calculation. The use of the mathematical model, however, confirmed that the vertical reactor geometry supported efficient photosynthesis by reducing the duration and intensity of photoinhibition events. The model also revealed that all three components of direct, diffuse, and reflected solar radiation were quantitatively important for the vertical column photobioreactor, accounting for 14%, 65%, and 21% of the total solar radiation reaching the culture, respectively. The accurate prediction of the discrete components of solar radiation reaching the algae as a function of climatic, geographic, and design parameters is therefore crucial to optimize the individual reactor geometry and the layout/spacing between the individual reactors in a reactor farm.


Assuntos
Biocombustíveis , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Chlorella/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Fotobiorreatores , Luz Solar , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA