Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
NAR Genom Bioinform ; 6(3): lqae091, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39157585

RESUMO

The discovery of functional long non-coding RNAs (lncRNAs) changed their initial concept as transcriptional noise. LncRNAs have been identified as regulators of multiple biological processes, including chromatin structure, gene expression, splicing, mRNA degradation, and translation. However, functional studies of lncRNAs are hindered by the usual lack of phenotypes upon deletion or inhibition. Here, we used Drosophila imaginal discs as a model system to identify lncRNAs involved in development and regeneration. We examined a subset of lncRNAs expressed in the wing, leg, and eye disc development. Additionally, we analyzed transcriptomic data from regenerating wing discs to profile the expression pattern of lncRNAs during tissue repair. We focused on the lncRNA CR40469, which is upregulated during regeneration. We generated CR40469 mutant flies that developed normally but showed impaired wing regeneration upon cell death induction. The ability of these mutants to regenerate was restored by the ectopic expression of CR40469. Furthermore, we found that the lncRNA CR34335 has a high degree of sequence similarity with CR40469 and can partially compensate for its function during regeneration in the absence of CR40469. Our findings point to a potential role of the lncRNA CR40469 in trans during the response to damage in the wing imaginal disc.

2.
NAR Genom Bioinform ; 6(3): lqae075, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022326

RESUMO

The Catalan Initiative for the Earth BioGenome Project (CBP) is an EBP-affiliated project network aimed at sequencing the genome of the >40 000 eukaryotic species estimated to live in the Catalan-speaking territories (Catalan Linguistic Area, CLA). These territories represent a biodiversity hotspot. While covering less than 1% of Europe, they are home to about one fourth of all known European eukaryotic species. These include a high proportion of endemisms, many of which are threatened. This trend is likely to get worse as the effects of global change are expected to be particularly severe across the Mediterranean Basin, particularly in freshwater ecosystems and mountain areas. Following the EBP model, the CBP is a networked organization that has been able to engage many scientific and non-scientific partners. In the pilot phase, the genomes of 52 species are being sequenced. As a case study in biodiversity conservation, we highlight the genome of the Balearic shearwater Puffinus mauretanicus, sequenced under the CBP umbrella.

3.
Nat Commun ; 15(1): 5278, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937428

RESUMO

Long-read RNA sequencing is essential to produce accurate and exhaustive annotation of eukaryotic genomes. Despite advancements in throughput and accuracy, achieving reliable end-to-end identification of RNA transcripts remains a challenge for long-read sequencing methods. To address this limitation, we develop CapTrap-seq, a cDNA library preparation method, which combines the Cap-trapping strategy with oligo(dT) priming to detect 5' capped, full-length transcripts. In our study, we evaluate the performance of CapTrap-seq alongside other widely used RNA-seq library preparation protocols in human and mouse tissues, employing both ONT and PacBio sequencing technologies. To explore the quantitative capabilities of CapTrap-seq and its accuracy in reconstructing full-length RNA molecules, we implement a capping strategy for synthetic RNA spike-in sequences that mimics the natural 5'cap formation. Our benchmarks, incorporating the Long-read RNA-seq Genome Annotation Assessment Project (LRGASP) data, demonstrate that CapTrap-seq is a competitive, platform-agnostic RNA library preparation method for generating full-length transcript sequences.


Assuntos
Biblioteca Gênica , Análise de Sequência de RNA , Animais , Humanos , Camundongos , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Capuzes de RNA/genética
4.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559161

RESUMO

The precise coordination of important biological processes, such as differentiation and development, is highly dependent on the regulation of expression of the genetic information. The flow of the genetic information is tightly regulated on multiple levels. Among them, RNA export to cytosol is an essential step for the production of proteins in eukaryotic cells. Hence, estimating the relative concentration of RNA molecules of a given transcript species in the nucleus and in the cytosol is of major significance as it contributes to the understanding of the dynamics of RNA trafficking between the nucleus and the cytosol. The most efficient way to estimate the levels of RNA species genome-wide is through RNA sequencing (RNAseq). While RNAseq can be performed separately in the nucleus and in the cytosol, because measured transcript levels are relative to the total volume of RNA in these compartments, and because this volume is usually unknown, the transcript levels in the nucleus and in the cytosol cannot be directly compared. Here we show theoretically that if, in addition to nuclear and cytosolic RNA-seq, whole cell RNA-seq is also performed, then accurate estimations of the localization of transcripts can be obtained. Based on this, we designed a method that estimates, first the fraction of the total RNA volume in the cytosol (nucleus), and then, this fraction for every transcript. We evaluate our methodology on simulated data and nuclear and cytosolic single cell data available. Finally, we use our method to investigate the cellular localization of transcripts using bulk RNAseq data from the ENCODE project.

5.
J Biomed Sci ; 31(1): 27, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419051

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are pivotal players in cellular processes, and their unique cell-type specific expression patterns render them attractive biomarkers and therapeutic targets. Yet, the functional roles of most lncRNAs remain enigmatic. To address the need to identify new druggable lncRNAs, we developed a comprehensive approach integrating transcription factor binding data with other genetic features to generate a machine learning model, which we have called INFLAMeR (Identifying Novel Functional LncRNAs with Advanced Machine Learning Resources). METHODS: INFLAMeR was trained on high-throughput CRISPR interference (CRISPRi) screens across seven cell lines, and the algorithm was based on 71 genetic features. To validate the predictions, we selected candidate lncRNAs in the human K562 leukemia cell line and determined the impact of their knockdown (KD) on cell proliferation and chemotherapeutic drug response. We further performed transcriptomic analysis for candidate genes. Based on these findings, we assessed the lncRNA small nucleolar RNA host gene 6 (SNHG6) for its role in myeloid differentiation. Finally, we established a mouse K562 leukemia xenograft model to determine whether SNHG6 KD attenuates tumor growth in vivo. RESULTS: The INFLAMeR model successfully reconstituted CRISPRi screening data and predicted functional lncRNAs that were previously overlooked. Intensive cell-based and transcriptomic validation of nearly fifty genes in K562 revealed cell type-specific functionality for 85% of the predicted lncRNAs. In this respect, our cell-based and transcriptomic analyses predicted a role for SNHG6 in hematopoiesis and leukemia. Consistent with its predicted role in hematopoietic differentiation, SNHG6 transcription is regulated by hematopoiesis-associated transcription factors. SNHG6 KD reduced the proliferation of leukemia cells and sensitized them to differentiation. Treatment of K562 leukemic cells with hemin and PMA, respectively, demonstrated that SNHG6 inhibits red blood cell differentiation but strongly promotes megakaryocyte differentiation. Using a xenograft mouse model, we demonstrate that SNHG6 KD attenuated tumor growth in vivo. CONCLUSIONS: Our approach not only improved the identification and characterization of functional lncRNAs through genomic approaches in a cell type-specific manner, but also identified new lncRNAs with roles in hematopoiesis and leukemia. Such approaches can be readily applied to identify novel targets for precision medicine.


Assuntos
Leucemia , RNA Longo não Codificante , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Genômica , Leucemia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Mol Ecol ; 33(2): e17217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014715

RESUMO

Social insect reproductives and non-reproductives represent ideal models with which to understand the expression and regulation of alternative phenotypes. Most research in this area has focused on the developmental regulation of reproductive phenotypes in obligately social taxa such as honey bees, while relatively few studies have addressed the molecular correlates of reproductive differentiation in species in which the division of reproductive labour is established only in plastic dominance hierarchies. To address this knowledge gap, we generate the first genome for any stenogastrine wasp and analyse brain transcriptomic data for non-reproductives and reproductives of the facultatively social species Liostenogaster flavolineata, a representative of one of the simplest forms of social living. By experimentally manipulating the reproductive 'queues' exhibited by social colonies of this species, we show that reproductive division of labour in this species is associated with transcriptomic signatures that are more subtle and variable than those observed in social taxa in which colony living has become obligate; that variation in gene expression among non-reproductives reflects their investment into foraging effort more than their social rank; and that genes associated with reproductive division of labour overlap to some extent with those underlying division of labour in the separate polistine origin of wasp sociality but only explain a small portion of overall variation in this trait. These results indicate that broad patterns of within-colony transcriptomic differentiation in this species are similar to those in Polistinae but offer little support for the existence of a strongly conserved 'toolkit' for sociality.


Assuntos
Vespas , Abelhas/genética , Animais , Vespas/genética , Comportamento Social , Predomínio Social , Perfilação da Expressão Gênica , Transcriptoma/genética , Reprodução/genética
7.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014075

RESUMO

Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.

8.
Genome Biol ; 24(1): 230, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828616

RESUMO

The increasing availability of multidimensional phenotypic data in large cohorts of genotyped individuals requires efficient methods to identify genetic effects on multiple traits. Permutational multivariate analysis of variance (PERMANOVA) offers a powerful non-parametric approach. However, it relies on permutations to assess significance, which hinders the analysis of large datasets. Here, we derive the limiting null distribution of the PERMANOVA test statistic, providing a framework for the fast computation of asymptotic p values. Our asymptotic test presents controlled type I error and high power, often outperforming parametric approaches. We illustrate its applicability in the context of QTL mapping and GWAS.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Fenótipo , Genótipo , Mapeamento Cromossômico , Modelos Genéticos
9.
Nature ; 622(7981): 41-47, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794265

RESUMO

Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.


Assuntos
Genes , Genoma Humano , Anotação de Sequência Molecular , Isoformas de Proteínas , Humanos , Genoma Humano/genética , Anotação de Sequência Molecular/normas , Anotação de Sequência Molecular/tendências , Isoformas de Proteínas/genética , Projeto Genoma Humano , Pseudogenes , RNA/genética
10.
Cell Genom ; 3(8): 100375, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601977

RESUMO

Within the next decade, the genomes of 1.8 million eukaryotic species will be sequenced. Identifying genes in these sequences is essential to understand the biology of the species. This is challenging due to the transcriptional complexity of eukaryotic genomes, which encode hundreds of thousands of transcripts of multiple types. Among these, a small set of protein-coding mRNAs play a disproportionately large role in defining phenotypes. Due to their sequence conservation, orthology can be established, making it possible to define the universal catalog of eukaryotic protein-coding genes. This catalog should substantially contribute to uncovering the genomic events underlying the emergence of eukaryotic phenotypes. This piece briefly reviews the basics of protein-coding gene prediction, discusses challenges in finalizing annotation of the human genome, and proposes strategies for producing annotations across the eukaryotic Tree of Life. This lays the groundwork for obtaining the catalog of all genes-the Earth's code of life.

11.
Nucleic Acids Res ; 51(18): 9785-9803, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638757

RESUMO

Properties that make organisms ideal laboratory models in developmental and medical research are often the ones that also make them less representative of wild relatives. The waterflea Daphnia magna is an exception, by both sharing many properties with established laboratory models and being a keystone species, a sentinel species for assessing water quality, an indicator of environmental change and an established ecotoxicology model. Yet, Daphnia's full potential has not been fully exploited because of the challenges associated with assembling and annotating its gene-rich genome. Here, we present the first hologenome of Daphnia magna, consisting of a chromosomal-level assembly of the D. magna genome and the draft assembly of its metagenome. By sequencing and mapping transcriptomes from exposures to environmental conditions and from developmental morphological landmarks, we expand the previously annotates gene set for this species. We also provide evidence for the potential role of gene-body DNA-methylation as a mutagen mediating genome evolution. For the first time, our study shows that the gut microbes provide resistance to commonly used antibiotics and virulence factors, potentially mediating Daphnia's environmental-driven rapid evolution. Key findings in this study improve our understanding of the contribution of DNA methylation and gut microbiota to genome evolution in response to rapidly changing environments.

12.
bioRxiv ; 2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37398314

RESUMO

Long-read RNA sequencing is essential to produce accurate and exhaustive annotation of eukaryotic genomes. Despite advancements in throughput and accuracy, achieving reliable end-to-end identification of RNA transcripts remains a challenge for long-read sequencing methods. To address this limitation, we developed CapTrap-seq, a cDNA library preparation method, which combines the Cap-trapping strategy with oligo(dT) priming to detect 5'capped, full-length transcripts, together with the data processing pipeline LyRic. We benchmarked CapTrap-seq and other popular RNA-seq library preparation protocols in a number of human tissues using both ONT and PacBio sequencing. To assess the accuracy of the transcript models produced, we introduced a capping strategy for synthetic RNA spike-in sequences that mimics the natural 5'cap formation in RNA spike-in molecules. We found that the vast majority (up to 90%) of transcript models that LyRic derives from CapTrap-seq reads are full-length. This makes it possible to produce highly accurate annotations with minimal human intervention.

13.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292896

RESUMO

The majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts. We sequenced 264 LR-RNA-seq PacBio libraries totaling over 1 billion circular consensus reads (CCS) for 81 unique human and mouse samples. We detect at least one full-length transcript from 87.7% of annotated human protein coding genes and a total of 200,000 full-length transcripts, 40% of which have novel exon junction chains. To capture and compute on the three sources of transcript structure diversity, we introduce a gene and transcript annotation framework that uses triplets representing the transcript start site, exon junction chain, and transcript end site of each transcript. Using triplets in a simplex representation demonstrates how promoter selection, splice pattern, and 3' processing are deployed across human tissues, with nearly half of multi-transcript protein coding genes showing a clear bias toward one of the three diversity mechanisms. Evaluated across samples, the predominantly expressed transcript changes for 74% of protein coding genes. In evolution, the human and mouse transcriptomes are globally similar in types of transcript structure diversity, yet among individual orthologous gene pairs, more than half (57.8%) show substantial differences in mechanism of diversification in matching tissues. This initial large-scale survey of human and mouse long-read transcriptomes provides a foundation for further analyses of alternative transcript usage, and is complemented by short-read and microRNA data on the same samples and by epigenome data elsewhere in the ENCODE4 collection.

14.
Sci Rep ; 13(1): 6232, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085574

RESUMO

Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.


Assuntos
Vespas , Animais , Vespas/genética , Espécies Introduzidas , Reprodução
15.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897015

RESUMO

SUMMARY: Large-scale sharing of genomic quantification data requires standardized access interfaces. In this Global Alliance for Genomics and Health project, we developed RNAget, an API for secure access to genomic quantification data in matrix form. RNAget provides for slicing matrices to extract desired subsets of data and is applicable to all expression matrix-format data, including RNA sequencing and microarrays. Further, it generalizes to quantification matrices of other sequence-based genomics such as ATAC-seq and ChIP-seq. AVAILABILITY AND IMPLEMENTATION: https://ga4gh-rnaseq.github.io/schema/docs/index.html.


Assuntos
RNA , Software , Genômica , Genoma , Análise de Sequência de RNA
16.
ArXiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36994150

RESUMO

Scientists have been trying to identify all of the genes in the human genome since the initial draft of the genome was published in 2001. Over the intervening years, much progress has been made in identifying protein-coding genes, and the estimated number has shrunk to fewer than 20,000, although the number of distinct protein-coding isoforms has expanded dramatically. The invention of high-throughput RNA sequencing and other technological breakthroughs have led to an explosion in the number of reported non-coding RNA genes, although most of them do not yet have any known function. A combination of recent advances offers a path forward to identifying these functions and towards eventually completing the human gene catalogue. However, much work remains to be done before we have a universal annotation standard that includes all medically significant genes, maintains their relationships with different reference genomes, and describes clinically relevant genetic variants.

17.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36947084

RESUMO

Aquaporin-mediated oocyte hydration is considered important for the evolution of pelagic eggs and the radiative success of marine teleosts. However, the molecular regulatory mechanisms controlling this vital process are not fully understood. Here, we analyzed >400 piscine genomes to uncover a previously unknown teleost-specific aquaporin-1 cluster (TSA1C) comprised of tandemly arranged aqp1aa-aqp1ab2-aqp1ab1 genes. Functional evolutionary analysis of the TSA1C reveals a ∼300-million-year history of downstream aqp1ab-type gene loss, neofunctionalization, and subfunctionalization, but with marine species that spawn highly hydrated pelagic eggs almost exclusively retaining at least one of the downstream paralogs. Unexpectedly, one-third of the modern marine euacanthomorph teleosts selectively retain both aqp1ab-type channels and co-evolved protein kinase-mediated phosphorylation sites in the intracellular subdomains together with teleost-specific Ywhaz-like (14-3-3ζ-like) binding proteins for co-operative membrane trafficking regulation. To understand the selective evolutionary advantages of these mechanisms, we show that a two-step regulated channel shunt avoids competitive occupancy of the same plasma membrane space in the oocyte and accelerates hydration. These data suggest that the evolution of the adaptive molecular regulatory features of the TSA1C facilitated the rise of pelagic eggs and their subsequent geodispersal in the oceanic currents.


Assuntos
Proteínas 14-3-3 , Oócitos , Animais , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Oócitos/metabolismo , Evolução Molecular , Peixes/genética , Filogenia
18.
PLoS Biol ; 21(2): e3001986, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745672

RESUMO

Circadian and circannual cycles trigger physiological changes whose reflection on human transcriptomes remains largely uncharted. We used the time and season of death of 932 individuals from GTEx to jointly investigate transcriptomic changes associated with those cycles across multiple tissues. Overall, most variation across tissues during day-night and among seasons was unique to each cycle. Although all tissues remodeled their transcriptomes, brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity showed stronger day-night regulation. Core clock genes displayed marked day-night differences across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways, and it was enriched among genes associated with the immune response, consistent with the seasonality of viral infections. Furthermore, they unveiled cytoarchitectural changes in brain regions. Altogether, our results provide the first combined atlas of how transcriptomes from human tissues adapt to major cycling environmental conditions. This atlas may have multiple applications; for example, drug targets with day-night or seasonal variation in gene expression may benefit from temporally adjusted doses.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Animais , Camundongos , Estações do Ano , Transcriptoma/genética , Adaptação Fisiológica , Ritmo Circadiano/genética
19.
Cell Genom ; 3(1): 100244, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777183

RESUMO

Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.

20.
Comput Struct Biotechnol J ; 20: 4549-4561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090817

RESUMO

Neurodegenerative and neuropsychiatric disorders (ND-NPs) are multifactorial, polygenic and complex behavioral phenotypes caused by brain abnormalities. Large-scale collaborative efforts have tried to identify the genetic architecture of these conditions. However, the specific and shared underlying molecular pathobiology of brain illnesses is not clear. Here, we examine transcriptome-wide characterization of eight conditions, using a total of 2,633 post-mortem brain samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD), Progressive Supranuclear Palsy (PSP), Pathological Aging (PA), Autism Spectrum Disorder (ASD), Schizophrenia (Scz), Major Depressive Disorder (MDD), and Bipolar Disorder (BP)-in comparison with 2,078 brain samples from matched control subjects. Similar transcriptome alterations were observed between NDs and NPs with the top correlations obtained between Scz-BP, ASD-PD, AD-PD, and Scz-ASD. Region-specific comparisons also revealed shared transcriptome alterations in frontal and temporal lobes across NPs and NDs. Co-expression network analysis identified coordinated dysregulations of cell-type-specific modules across NDs and NPs. This study provides a transcriptomic framework to understand the molecular alterations of NPs and NDs through their shared- and specific gene expression in the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA