Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007387

RESUMO

We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels effect. This is observed as a shift in the resonant angle of the grating (i.e., Δϕ), which can be related to the change in the local index of refraction of the electrolyte (i.e., Δnlocal). The reflection modulation of the IL is compared against a polar (D2O) and a non-polar solvent (benzene) to confirm the electro-optic origin of resonance shift. The electrostatic accumulation of ions from the IL induces local index changes to the gratings over the extent of electrical double layer (EDL) thickness. Finite difference time domain simulations are used to relate the observed shifts in the plasmon resonance and change in reflection to the change in the local index of refraction of the electrolyte and the thickness of the EDL. Simultaneously using the wavelength and intensity shift of the resonance enables us to determine both the effective thickness and Δn of the double layer. We believe that this technique can be used more broadly, allowing the dynamics associated with the potential-induced ordering and rearrangement of ionic species in electrode-solution interfaces.

2.
Biosens Bioelectron ; 171: 112679, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069957

RESUMO

The 2019 SARS CoV-2 (COVID-19) pandemic has illustrated the need for rapid and accurate diagnostic tests. In this work, a multiplexed grating-coupled fluorescent plasmonics (GC-FP) biosensor platform was used to rapidly and accurately measure antibodies against COVID-19 in human blood serum and dried blood spot samples. The GC-FP platform measures antibody-antigen binding interactions for multiple targets in a single sample, and has 100% selectivity and sensitivity (n = 23) when measuring serum IgG levels against three COVID-19 antigens (spike S1, spike S1S2, and the nucleocapsid protein). The GC-FP platform yielded a quantitative, linear response for serum samples diluted to as low as 1:1600 dilution. Test results were highly correlated with two commercial COVID-19 antibody tests, including an enzyme linked immunosorbent assay (ELISA) and a Luminex-based microsphere immunoassay. To demonstrate test efficacy with other sample matrices, dried blood spot samples (n = 63) were obtained and evaluated with GC-FP, yielding 100% selectivity and 86.7% sensitivity for diagnosing prior COVID-19 infection. The test was also evaluated for detection of multiple immunoglobulin isotypes, with successful detection of IgM, IgG and IgA antibody-antigen interactions. Last, a machine learning approach was developed to accurately score patient samples for prior COVID-19 infection, using antibody binding data for all three COVID-19 antigens used in the test.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas de Laboratório Clínico , Infecções por Coronavirus/sangue , Pneumonia Viral/sangue , Anticorpos Antivirais/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Teste em Amostras de Sangue Seco , Desenho de Equipamento , Fluorescência , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Dispositivos Lab-On-A-Chip , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/imunologia , SARS-CoV-2 , Sensibilidade e Especificidade
3.
ACS Appl Mater Interfaces ; 12(15): 17459-17465, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212673

RESUMO

We demonstrate the hot electron injection of photoexcited carriers in an Ag-based plasmon resonant grating structure. By varying the incident angle of irradiation, sharp dips are observed in the reflectance with p-polarized light (electric field perpendicular to grating lines) when there is wavevector matching between the incident light and the plasmon resonant modes of the grating and no angle dependence is observed with s-polarized light. This configuration enables us to compare photoelectrochemical current produced by plasmon resonant excitation with that of bulk metal interband absorption simply by rotating the polarization of the incident light while keeping all other parameters of the measurement fixed. With 633 nm light, we observed a 12-fold enhancement in the photocurrent (i.e., reaction rate) between resonant and nonresonant polarizations at incident angles of ±7.6° from normal. At 785 nm irradiation, we observed similar resonant profiles to those obtained with 633 nm wavelength light but with a 44-fold enhancement factor. Using 532 nm light, we observed two resonant peaks (with approximately 10× enhancement) in the photocurrent at 19.4° and 28.0° incident angles, each corresponding to higher order modes in the grating with more nodes per period. The lower enhancement factors observed at shorter wavelengths are attributed to interband transitions, which provide a damping mechanism for the plasmon resonance. Finite difference time domain (FDTD) simulations of these grating structures confirm the resonant profiles observed in the angle-dependent spectra of these gratings and provide a detailed picture of the electric field profiles on and off resonance.

4.
PLoS One ; 15(2): e0228772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32040491

RESUMO

Lyme disease (LD) diagnosis using the current two-tier algorithm is constrained by low sensitivity for early-stage infection and ambiguity in determining treatment response. We recently developed a protein microarray biochip that measures diagnostic serum antibody targets using grating-coupled fluorescent plasmonics (GC-FP) technology. This strategy requires microliters of blood serum to enable multiplexed biomarker screening on a compact surface and generates quantitative results that can be further processed for diagnostic scoring. The GC-FP biochip was used to detect serum antibodies in patients with active and convalescent LD, as well as various negative controls. We hypothesized that the quantitative, high-sensitivity attributes of the GC-FP approach permit: 1) screening of antibody targets predictive for LD status, and 2) development a diagnostic algorithm that is more sensitive, specific, and informative than the standard ELISA and Western blot assays. Notably, our findings led to a diagnostic algorithm that may be more sensitive than the current standard for detecting early LD, while maintaining 100% specificity. We further show that analysis of relative antibody levels to predict disease status, such as in acute and convalescent stages of infection, is possible with a highly sensitive and quantitative platform like GC-FP. The results from this study add to the urgent conversation regarding better diagnostic strategies and more effective treatment for patients affected by tick-borne disease.


Assuntos
Anticorpos Antibacterianos/sangue , Fluorescência , Dispositivos Lab-On-A-Chip , Doença de Lyme/sangue , Doença de Lyme/diagnóstico , Programas de Rastreamento/instrumentação , Humanos , Doença de Lyme/imunologia , Fatores de Tempo
5.
Faraday Discuss ; 214(0): 325-339, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31049541

RESUMO

Plasmon resonant grating structures provide an effective platform for distinguishing between the effects of plasmon resonant excitation and bulk metal absorption via interband transitions. By simply rotating the polarization of the incident light, we can switch between resonant excitation and non-resonant excitation, while keeping all other parameters of the measurement constant. With light polarized perpendicular to the lines in the grating (i.e., TE-polarization), the photocatalytic reaction rate (i.e., photocurrent) is measured as the angle of the incident laser light is tuned through the resonance with the grating. Here, hot holes photoexcited in the metal are used to drive the oxygen evolution reaction (OER), producing a measurable photocurrent. Using TE-polarized light, we observe sharp peaks in the photocurrent and sharp dips in the photoreflectance at approximately 9° from normal incidence, which corresponds to the conditions under which there is good wavevector matching between the incident light and the lines in the grating. With light polarized parallel to the grating (i.e., TM), we excite the grating structure non-resonantly and there is no angular dependence in the photocurrent or photoreflectance. In order to quantify the lifetime of these hot carriers, we performed transient absorption spectroscopy of these plasmon resonant grating structures. Here, we observe one feature in the spectra corresponding to interband transitions and another feature associated with the plasmon resonant mode in the grating. Both features decay over a time scale of 1-2 ps. The spectral responses of grating structures fabricated with Ag, Al, and Cu are also presented.

6.
Chem Phys Lett ; 591: 5-9, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24505144

RESUMO

We describe a novel approach to enhance the sensitivity of a grating-based surface plasmon-coupled emission (SPCE) sensor by increasing the thickness of the metal film used in this system. The calculated optical properties of grating-based SPR spectra were significantly affected by both grating depth and by gold thickness. Higher angular sensitivity could be achieved at short wavelengths and under in situ measurement (analysis under aqueous condition). We confirmed the predicated enhancements of SPCE response using Alexa Fluor 647-labeled anti-mouse IgG immobilized on the SPCE sensor chips. Grating-coupled SPCE sensor chips can be used as a useful tool for high contents analysis of chemical and biomolecular interactions.

7.
Analyst ; 138(9): 2576-82, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23508135

RESUMO

We have evaluated the performance of a novel high-content gold grating coupler-based surface plasmon-coupled emission (SPCE) biosensor system. The polyelectrolyte (PEL) layer on the system's biosensor chip surface was formed on the gold surface using a layer-by-layer (LbL) deposition technique to spatially separate fluorophores from the gold surface and as a linker layer for protein immobilization. The characteristics of the PEL spacer layers were determined by surface plasmon resonance (SPR) analysis and by ellipsometry. The SPCE response decreased as the spacer layer thickness increased above a dominant quenching range (10 nm). Two PEL layers of poly(diallyldimethylammonium chloride) and poly(acrylic acid) were found to be an effective spacer that minimized the quenching effect while maximizing SPCE responses for both direct and sandwich immunoassay formats. A mouse IgG sandwich immunoassay using this optimized spacer layer configuration showed a dose-dependent response with a 1 pg ml(-1) limit of detection by the 3σ rule. A nine log dynamic range of human IgG concentrations in unfractionated human serum could be analyzed using this approach. These results show the potential of the grating coupler-based SPCE biosensor as a sensitive platform for high-content analysis.


Assuntos
Imunoensaio/instrumentação , Imunoglobulina G/análise , Ressonância de Plasmônio de Superfície/instrumentação , Resinas Acrílicas/química , Animais , Anticorpos Imobilizados/química , Desenho de Equipamento , Ouro/química , Humanos , Limite de Detecção , Camundongos , Polietilenos/química , Compostos de Amônio Quaternário/química
8.
Analyst ; 137(11): 2574-81, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22498719

RESUMO

We have developed a novel dual mode immunoassay platform that combines the advantages of real-time, label free measurement of surface plasmon resonance (SPR) and the highly directional surface plasmon-coupled emission (SPCE) using a gold grating-based sensor chip. Since only fluorophore-labeled analyte molecules that are close to the metal surface of the sensor chip will couple to the surface plasmon, SPCE detection is highly surface-specific leading to background suppression and increased sensitivity. Theoretical calculations were done to find SPR and SPCE angles for a sensor chip optimized for Alexa Fluor 647. We have confirmed the SPR and SPCE responses on the dual mode sensor chip using Alexa Fluor 647 labeled anti-mouse IgG. Signal fluctuation of the dual mode sensor chip reader was below 1.2% and 0.8% for SPR and SPCE, respectively. The SPR response in this configuration showed a minimum detection level of 1 µg ml(-1), and the SPCE response showed a minimum detection level of 1 ng ml(-1) for the same sample. A range of human IgG concentrations in human serum was also analyzed with the dual mode sensor chip. The SPCE measurement is more sensitive than the SPR real-time measurement, and substantially extends the dynamic range of the assay platform, as well as enabling independent measurements of co-localized analytes on the same sensor chip region of interest. Since this assay platform is capable of measuring more than 1000 spatially encoded regions of interest on a 1 cm(2) sensor chip, it has the potential for high-content analyses of biological samples with both research and clinical applications.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ouro/química , Imunoglobulina G/análise , Ressonância de Plasmônio de Superfície , Animais , Carbocianinas/química , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos
9.
Biosens Bioelectron ; 31(1): 264-9, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22104646

RESUMO

The circulating population of peripheral T lymphocytes obtained from a blood sample can provide a large amount of information about an individual's medical status and history. Recent evidence indicates that the detection and functional characterization of antigen-specific T cell subsets within the circulating population may provide a diagnostic indicator of disease and has the potential to predict an individual's response to therapy. In this report, a microarray detection platform that combines grating-coupled surface plasmon resonance imaging (GCSPRI) and grating-coupled surface plasmon coupled emission (SPCE) fluorescence detection modalities were used to detect and characterize CD4(+) T cells. The microspot regions of interest (ROIs) printed on the array consisted of immobilized antibodies or peptide loaded MHC monomers (p/MHC) as T cell capture ligands mixed with additional antibodies as cytokine capture ligands covalently bound to the surface of a corrugated gold sensor chip. Using optimized parameters, an unlabeled influenza peptide reactive T cell clone could be detected at a frequency of 0.1% in a mixed T cell sample using GCSPRI. Additionally, after cell binding was quantified, differential TH1 cytokine secretion patterns from a T cell clone cultured under TH1 or TH2 inducing conditions was detected using an SPCE fluorescence based assay. Differences in the secretion patterns of 3 cytokines, characteristic of the inducing conditions, indicated that differences were a consequence of the functional status of the captured cells. A dual mode GCSPRI/SPCE assay can provide a rapid, high content T cell screening/characterization tool that is useful for diagnosing disease, evaluating vaccination efficacy, or assessing responses to immunotherapeutics.


Assuntos
Antígenos/imunologia , Imunoensaio/instrumentação , Análise Serial de Proteínas/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Linfócitos T/classificação , Linfócitos T/imunologia , Antígenos/análise , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Fenótipo , Sensibilidade e Especificidade , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA