Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1206279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485274

RESUMO

Background: Current treatments of chemotherapy-induced cardiomyopathy (CCM) are of limited efficacy. We assessed whether repeated intravenous injections of human extracellular vesicles from cardiac progenitor cells (EV-CPC) could represent a new therapeutic option and whether EV manufacturing according to a Good Manufacturing Practices (GMP)-compatible process did not impair their bioactivity. Methods: Immuno-competent mice received intra-peritoneal injections (IP) of doxorubicin (DOX) (4 mg/kg each; cumulative dose: 12 mg/kg) and were then intravenously (IV) injected three times with EV-CPC (total dose: 30 billion). Cardiac function was assessed 9-11 weeks later by cardiac magnetic resonance imaging (CMR) using strain as the primary end point. Then, immuno-competent rats received 5 IP injections of DOX (3 mg/kg each; cumulative dose 15 mg/kg) followed by 3 equal IV injections of GMP-EV (total dose: 100 billion). Cardiac function was assessed by two dimensional-echocardiography. Results: In the chronic mouse model of CCM, DOX + placebo-injected hearts incurred a significant decline in basal (global, epi- and endocardial) circumferential strain compared with sham DOX-untreated mice (p = 0.043, p = 0.042, p = 0.048 respectively) while EV-CPC preserved these indices. Global longitudinal strain followed a similar pattern. In the rat model, IV injections of GMP-EV also preserved left ventricular end-systolic and end-diastolic volumes compared with untreated controls. Conclusions: Intravenously-injected extracellular vesicles derived from CPC have cardio-protective effects which may make them an attractive user-friendly option for the treatment of CCM.

2.
Theranostics ; 11(20): 10114-10124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815807

RESUMO

Background: Extracellular vesicles (EV) mediate the therapeutic effects of stem cells but it is unclear whether this involves cardiac regeneration mediated by endogenous cardiomyocyte proliferation. Methods: Bi-transgenic MerCreMer/ZEG (n = 15/group) and Mosaic Analysis With Double Markers (MADM; n = 6/group) mouse models underwent permanent coronary artery ligation and received, 3 weeks later, 10 billion EV (from human iPS-derived cardiovascular progenitor cells [CPC]), or saline, injected percutaneously under echo guidance in the peri-infarcted myocardium. Endogenous cardiomyocyte proliferation was tracked by EdU labeling and biphoton microscopy. Other end points, including cardiac function (echocardiography and MRI), histology and transcriptomics were blindly assessed 4-6 weeks after injections. Results: There was no proliferation of cardiomyocytes in either transgenic mouse strains. Nevertheless, EV improved cardiac function in both models. In MerCreMer/ZEG mice, LVEF increased by 18.3 ± 0.2% between baseline and the end-study time point in EV-treated hearts which contrasted with a decrease by 2.3 ± 0.2% in the PBS group; MADM mice featured a similar pattern as intra-myocardial administration of EV improved LVEF by 13.3 ± 0.16% from baseline whereas it decreased by 14.4 ± 0.16% in the control PBS-injected group. This functional improvement was confirmed by MRI and associated with a reduction in infarct size, the decreased expression of several pro-fibrotic genes and an overexpression of the anti-fibrotic miRNA 133-a1 compared to controls. Experiments with an anti-miR133-a demonstrated that the cardio-reparative effects of EV were partly abrogated. Conclusions: EV-CPC do not trigger cardiomyocyte proliferation but still improve cardiac function by other mechanisms which may include the regulation of fibrosis.


Assuntos
Vesículas Extracelulares/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/transplante , Fibrose/fisiopatologia , Regeneração Tecidual Guiada/métodos , Insuficiência Cardíaca/metabolismo , Testes de Função Cardíaca/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos
3.
Cardiovasc Res ; 117(1): 292-307, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049348

RESUMO

AIMS: The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. METHODS AND RESULTS: Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. CONCLUSIONS: EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


Assuntos
Proliferação de Células , Vesículas Extracelulares/transplante , Insuficiência Cardíaca/cirurgia , Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/cirurgia , Miocárdio/imunologia , Miócitos Cardíacos/transplante , Regeneração , Animais , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Ratos
4.
Vaccine ; 38(8): 1888-1892, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31964555

RESUMO

A single oral inoculation to mice of the live attenuated Yersinia pseudotuberculosis VTnF1 strain producing an F1 pseudocapsule protects against bubonic and pneumonic plague. However oral vaccination can fail in humans exposed to frequent intestinal infections. We evaluated in mice the efficacy of subcutaneous vaccine injection as an alternative way to induce protective immunity, while reducing the dose and avoiding strain release in nature. A single subcutaneous dose of up to 108 CFU induced dose-dependent antibody production. At the dose of 107 CFU, i.e. 10 times less than via the oral route, it caused a modest skin reaction and protected 100% against bubonic and 80% against pneumonic plague, caused by high doses of Yersinia pestis. Bacteria migrating to lymph nodes and spleen, but not feces, were rapidly eliminated. Thus, subcutaneous injection of VTnF1 would represent a good alternative when dissemination in nature and human intestinal responsiveness are limitations.


Assuntos
Vacina contra a Peste/administração & dosagem , Peste/prevenção & controle , Vacinação/métodos , Animais , Relação Dose-Resposta Imunológica , Injeções Subcutâneas , Camundongos , Vacinas Atenuadas/administração & dosagem , Yersinia pestis/imunologia , Yersinia pseudotuberculosis/imunologia
5.
Vaccine ; 37(1): 123-129, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30467064

RESUMO

Immunization with the live-attenuated Yersinia pseudotuberculosis VTnF1 strain producing a Yersinia pestis F1 pseudocapsule efficiently protects mice against bubonic and pneumonic plague. In clinical trials, demonstration of a plague vaccine's efficacy in humans will not be feasible, and correlates of protection will be needed to bridge the immune response of protected animals to that of vaccinated humans. Using serum transfer and vaccination of antibody-deficient µMT mice, we established that both humoral and cellular responses elicited by VTnF1 independently conferred protection against bubonic plague. Thus, correlates were searched for in both responses, using blood only. Mice were vaccinated with increasing doses of VTnF1 to provide a range of immune responses and survival outcomes. The cellular response was evaluated using an in vitro IFNγ release assay, and IFNγ levels were significantly associated with protection, although some survivors were negative for IFNγ, so that IFNγ release is not a fully satisfactory correlate. Abundant serum IgG against the F1 capsule, Yop injectable toxins, and also non-F1 Y.pestis antigens were found, but none against the LcrV antigen. All readouts correlated to survival and to each other, confirming that vaccination triggered multiple protective mechanisms developing in parallel. Anti-F1 IgG was the most stringent correlate of protection, in both inbred BALB/c mice and outbred OF1 mice. This indicates that antibodies (Ab) to F1 play a dominant role for protection even in the presence of Ab to many other targets. Easy to measure, the anti-F1 IgG titer will be useful to evaluate the immune response in other animal species and in clinical trials.


Assuntos
Anticorpos Antibacterianos/sangue , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/sangue , Vacina contra a Peste/imunologia , Peste/imunologia , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Feminino , Interferon gama/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peste/prevenção & controle , Vacinas Atenuadas/imunologia , Yersinia pestis/imunologia , Yersinia pseudotuberculosis/imunologia
6.
Oncotarget ; 8(42): 72513-72527, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069806

RESUMO

The tumor suppressor BAP1 associates with ASXL1/2 to form the core Polycomb complex PR-DUB, which catalyzes the removal of mono-ubiquitin from several substrates including histone H2A. This complex also mediates the poly-deubiquitination of HCFC1, OGT and PCG1-α, preventing them from proteasomal degradation. Surprisingly, considering its role in a Polycomb complex, no transcriptional signature was consistently found among BAP1-inactivated tumor types. It was hypothesized that BAP1 tumor suppressor activity could reside, at least in part, in stabilizing proteins through its poly-deubiquitinase activity. Quantitative mass spectrometry and gene expression arrays were used to investigate the consequences of BAP1 expression modulation in the NCI-H226 mesothelioma cell line. Analysis of differentially expressed proteins revealed enrichment in cytoskeleton organization, mitochondrial activity and ROS management, while gene expression analysis revealed enrichment in the epithelial-to-mesenchymal transition pathway. Functional assessments in BAP1 inactivated, BAP1 wild-type and BAP1 catalytically dead-expressing NCI-H226 and QR mesothelioma cell lines confirmed alteration of these pathways and demonstrated that BAP1 deubiquitinase activity was mandatory to maintain these phenotypes. Interestingly, monitoring intracellular ROS levels partly restored the morphology and the mitochondrial activity. Finally, the study suggests new tumorigenic and cellular functions of BAP1 and shows for the first time the interest of studying the proteome as readout of BAP1 inactivation.

7.
J Infect Dis ; 216(6): 761-770, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28934426

RESUMO

Background: Susceptibility to infection is in part genetically driven, and C57BL/6 mice resist various pathogens through the proinflammatory response of their M1 macrophages (MPs). However, they are susceptible to plague. It has been reported elsewhere that Mus spretus SEG mice resist plague and develop an immune response characterized by a strong recruitment of MPs. Methods: The responses of C57BL/6 and SEG MPs exposed to Yersinia pestis in vitro were examined. Results: SEG MPs exhibit a stronger bactericidal activity with higher nitric oxide production, a more proinflammatory polarized cytokine response, and a higher resistance to Y. pestis-induced apoptosis. This response was not specific to Y. pestis and involved a reduced sensitivity to M2 polarization/signal transducer and activator of transcription 6 activation and inhibition of caspase 8. The enhanced M1 profile was inducible in C57BL/6 MPs in vitro, and when transferred to susceptible C57BL/6 mice, these MPs significantly increased survival of bubonic plague. Conclusions: MPs can develop an enhanced functional profile beyond the prototypic M1, characterized by an even more potent proinflammatory response coordinated with resistance to killing. This programming plays a key role in the plague-resistance phenotype and may be similarly significant in other highly lethal infections, suggesting that orienting the MP response may represent a new therapeutic approach.


Assuntos
Apoptose , Macrófagos/imunologia , Peste/imunologia , Yersinia pestis , Animais , Células Cultivadas , Citocinas/sangue , Feminino , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Óxido Nítrico/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA