Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSphere ; 6(3)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952662

RESUMO

Aerobic bacteria are frequent primocolonizers of the human naive intestine. Their generally accepted role is to eliminate oxygen, which would allow colonization by anaerobes that subsequently dominate bacterial gut populations. In this hypothesis-based study, we revisited this dogma experimentally in a germfree mouse model as a mimic of the germfree newborn. We varied conditions leading to the establishment of the dominant intestinal anaerobe Bacteroides thetaiotaomicron Two variables were introduced: Bacteroides inoculum size and preestablishment by bacteria capable or not of consuming oxygen. High Bacteroides inoculum size enabled its primocolonization. At low inocula, we show that bacterial preestablishment was decisive for subsequent Bacteroides colonization. However, even non-oxygen-respiring bacteria, a hemAEscherichia coli mutant and the intestinal obligate anaerobe Clostridium scindens, facilitated Bacteroides establishment. These findings, which are supported by recent reports, revise the long-held assumption that oxygen scavenging is the main role for aerobic primocolonizing bacteria. Instead, we suggest that better survival of aerobic bacteria ex vivo during vectorization between hosts could be a reason for their frequent primocolonization.


Assuntos
Bactérias/metabolismo , Bacteroides thetaiotaomicron/fisiologia , Intestinos/microbiologia , Oxigênio/metabolismo , Aerobiose , Animais , Bactérias/classificação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Organismos Livres de Patógenos Específicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-28193654

RESUMO

The need for new antimicrobials to treat bacterial infections has led to the use of type II fatty acid synthesis (FASII) enzymes as front-line targets. However, recent studies suggest that FASII inhibitors may not work against the opportunist pathogen Staphylococcus aureus, as environmental fatty acids favor emergence of multi-anti-FASII resistance. As fatty acids are abundant in the host and one FASII inhibitor, triclosan, is widespread, we investigated whether fatty acid pools impact resistance in clinical and veterinary S. aureus isolates. Simple addition of fatty acids to the screening medium led to a 50% increase in triclosan resistance, as tested in 700 isolates. Moreover, nonculturable triclosan-resistant fatty acid auxotrophs, which escape detection under routine conditions, were uncovered in primary patient samples. FASII bypass in selected isolates correlated with polymorphisms in the acc and fabD loci. We conclude that fatty-acid-dependent strategies to escape FASII inhibition are common among S. aureus isolates and correlate with anti-FASII resistance and emergence of nonculturable variants.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos Locais/farmacologia , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Inibidores da Síntese de Ácidos Graxos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Triclosan/farmacologia , Animais , Bovinos , Farmacorresistência Bacteriana/genética , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo
3.
J Bacteriol ; 194(2): 253-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22056928

RESUMO

Escherichia coli K-12 suffers acetic acid stress during prolonged incubation in glucose minimal medium containing a limiting concentration of inorganic phosphate (0.1 mM P(i)), which decreases the number of viable cells from 6 × 10(8) to ≤10 CFU/ml between days 6 and 14 of incubation. Here we show that following two serial transfers into P(i)-limiting medium, evolved mutants survived prolonged incubation (≈10(7) CFU/ml on day 14 of incubation). The evolved strains that overtook the populations were generally PhnE(+), whereas the ancestral K-12 strain carries an inactive phnE allele, which prevents the transport of phosphonates. The switching in phnE occurred with a high frequency as a result of the deletion of an 8-bp repeated sequence. In a mixed culture starved for P(i) that contained the K-12 ancestral strain in majority, evolved strains grew through PhnE-dependent scavenging of probably organic phosphate esters (not phosphonates or P(i)) released by E. coli K-12 between days 1 and 3, before acetic acid excreted by E. coli K-12 reached toxic levels. The growth yield of phnE(+) strains in mixed culture was dramatically enhanced by mutations that affect glucose metabolism, such as an rpoS mutation inactivating the alternative sigma factor RpoS. The long-term viability of evolved populations was generally higher when the ancestral strain carried an inactive rather than an active phnE allele, which indicates that cross-feeding of phosphorylated products as a result of the phnE polymorphism may be essential for the spread of mutants which eventually help populations to survive under P(i) starvation conditions.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Evolução Biológica , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fosfatos/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Organofosfatos , Fenótipo , Fator sigma/genética , Fator sigma/metabolismo
4.
J Bacteriol ; 190(16): 5567-75, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18556786

RESUMO

The activity of amino acid-dependent acid resistance systems allows Escherichia coli to survive during prolonged incubation under phosphate (P(i)) starvation conditions. We show in this work that rpoS-null mutants incubated in the absence of any amino acid survived during prolonged incubation under aerobic, P(i) starvation conditions. Whereas rpoS(+) cells incubated with glutamate excreted high levels of acetate, rpoS mutants grew on acetic acid. The characteristic metabolism of rpoS mutants required the activity of Fur (ferric uptake regulator) in order to decrease the synthesis of the small RNA RyhB that might otherwise inhibit the synthesis of iron-rich proteins. We propose that RpoS (sigma(S)) and the small RNA RyhB contribute to decrease the synthesis of iron-rich proteins required for the activity of the tricarboxylic acid (TCA) cycle, which redirects the metabolic flux toward the production of acetic acid at the onset of stationary phase in rpoS(+) cells. In contrast, Fur activity, which represses ryhB, and the lack of RpoS activity allow a substantial activity of the TCA cycle to continue in stationary phase in rpoS mutants, which decreases the production of acetic acid and, eventually, allows growth on acetic acid and P(i) excreted into the medium. These data may help explain the fact that a high frequency of E. coli rpoS mutants is found in nature.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Ácidos Carboxílicos/metabolismo , Escherichia coli/fisiologia , Inativação Metabólica , Fosfatos/metabolismo , Proteínas Repressoras/fisiologia , Fator sigma/genética , Ácido Acético/metabolismo , Aerobiose , Fusão Gênica Artificial , Ácidos Carboxílicos/toxicidade , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Genes Reporter , Glucose/metabolismo , Viabilidade Microbiana , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA