Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Funct Genomics ; 22(5): 428-441, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37119295

RESUMO

Artificial intelligence is revolutionizing all fields that affect people's lives and health. One of the most critical applications is in the study of tumors. It is the case of glioblastoma (GBM) that has behaviors that need to be understood to develop effective therapies. Due to advances in single-cell RNA sequencing (scRNA-seq), it is possible to understand the cellular and molecular heterogeneity in the GBM. Given that there are different cell groups in these tumors, there is a need to apply Machine Learning (ML) algorithms. It will allow extracting information to understand how cancer changes and broaden the search for effective treatments. We proposed multiple comparisons of ML algorithms to classify cell groups based on the GBM scRNA-seq data. This broad comparison spectrum can show the scientific-medical community which models can achieve the best performance in this task. In this work are classified the following cell groups: Tumor Core (TC), Tumor Periphery (TP) and Normal Periphery (NP), in binary and multi-class scenarios. This work presents the biomarker candidates found for the models with the best results. The analyses presented here allow us to verify the biomarker candidates to understand the genetic characteristics of GBM, which may be affected by a suitable identification of GBM heterogeneity. This work obtained for the four scenarios covered cross-validation results of $93.03\% \pm 5.37\%$, $97.42\% \pm 3.94\%$, $98.27\% \pm 1.81\%$ and $93.04\% \pm 6.88\%$ for the classification of TP versus TC, TP versus NP, NP versus TP and TC (TPC) and NP versus TP versus TC, respectively.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Inteligência Artificial , Biomarcadores , Aprendizado de Máquina , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
2.
PeerJ Comput Sci ; 7: e798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34909465

RESUMO

Recent advances in artificial intelligence with traditional machine learning algorithms and deep learning architectures solve complex classification problems. This work presents the performance of different artificial intelligence models to classify two-phase flow patterns, showing the best alternatives for this specific classification problem using two-phase flow regimes (liquid and gas) in pipes. Flow patterns are affected by physical variables such as superficial velocity, viscosity, density, and superficial tension. They also depend on the construction characteristics of the pipe, such as the angle of inclination and the diameter. We selected 12 databases (9,029 samples) to train and test machine learning models, considering these variables that influence the flow patterns. The primary dataset is Shoham (1982), containing 5,675 samples with six different flow patterns. An extensive set of metrics validated the results obtained. The most relevant characteristics for training the models using Shoham (1982) dataset are gas and liquid superficial velocities, angle of inclination, and diameter. Regarding the algorithms, the Extra Trees model classifies the flow patterns with the highest degree of fidelity, achieving an accuracy of 98.8%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA