Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 374(6563): eaay9165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591645

RESUMO

Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño­Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. "Decadal," which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.

3.
Nature ; 559(7715): 535-545, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046070

RESUMO

El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.


Assuntos
El Niño Oscilação Sul , Mudança Climática , Clima Tropical , Movimentos da Água
4.
Nat Commun ; 9(1): 855, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472556

RESUMO

The original version of this Article omitted a reference to previous work in 'Mann, M.E., Cane, M.A., Zebiak, S.E., Clement, A., Volcanic and Solar Forcing of the Tropical Pacific Over the Past 1000 Years, J. Climate 18, 447-456 (2005)'. This has been added as reference 62 at the end of the fourth sentence of the fourth paragraph of the Introduction: 'Early studies using simple coupled ocean-atmosphere models26 proposed that following volcano-induced surface cooling, upwelling in the eastern equatorial Pacific acting on a reduced vertical temperature contrast between the ocean surface and interior leads to anomalous warming in this region, thereby favouring El Niño development the following year12, 27, 62.' This has been corrected in the PDF and HTML versions of the Article.

6.
Nat Commun ; 8(1): 778, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974676

RESUMO

Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism. Here we show that an El Niño tends to peak during the year following large eruptions in simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). Targeted climate model simulations further emphasize that Pinatubo-like eruptions tend to shorten La Niñas, lengthen El Niños and induce anomalous warming when occurring during neutral states. Volcanically induced cooling in tropical Africa weakens the West African monsoon, and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over the western Pacific. This wind anomaly is further amplified by air-sea interactions in the Pacific, favouring an El Niño-like response.El Niño tends to follow 2 years after volcanic eruptions, but the physical mechanism behind this phenomenon is unclear. Here the authors use model simulations to show that a Pinatubo-like eruption cools tropical Africa and drives westerly wind anomalies in the Pacific favouring an El Niño response.

7.
Nat Commun ; 6: 6545, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25818017

RESUMO

While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption.

8.
Proc Natl Acad Sci U S A ; 111(32): 11646-51, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071174

RESUMO

With the emergence of decadal predictability simulations, research toward forecasting variations of the climate system now covers a large range of timescales. However, assessment of the capacity to predict natural variations of relevant biogeochemical variables like carbon fluxes, pH, or marine primary productivity remains unexplored. Among these, the net primary productivity (NPP) is of particular relevance in a forecasting perspective. Indeed, in regions like the tropical Pacific (30°N-30°S), NPP exhibits natural fluctuations at interannual to decadal timescales that have large impacts on marine ecosystems and fisheries. Here, we investigate predictions of NPP variations over the last decades (i.e., from 1997 to 2011) with an Earth system model within the tropical Pacific. Results suggest a predictive skill for NPP of 3 y, which is higher than that of sea surface temperature (1 y). We attribute the higher predictability of NPP to the poleward advection of nutrient anomalies (nitrate and iron), which sustain fluctuations in phytoplankton productivity over several years. These results open previously unidentified perspectives to the development of science-based management approaches to marine resources relying on integrated physical-biogeochemical forecasting systems.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Ecossistema , Modelos Biológicos , Clima Tropical , Análise de Variância , Animais , Ciclo do Carbono , Mudança Climática , Simulação por Computador , Pesqueiros , Cadeia Alimentar , Previsões , Oceano Pacífico , Fitoplâncton/crescimento & desenvolvimento , Água do Mar , Temperatura
9.
Nature ; 504(7478): 126-30, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24240279

RESUMO

The El Niño/Southern Oscillation (ENSO) is the Earth's most prominent source of interannual climate variability, exerting profound worldwide effects. Despite decades of research, its behaviour continues to challenge scientists. In the eastern equatorial Pacific Ocean, the anomalously cool sea surface temperatures (SSTs) found during La Niña events and the warm waters of modest El Niño events both propagate westwards, as in the seasonal cycle. In contrast, SST anomalies propagate eastwards during extreme El Niño events, prominently in the post-1976 period, spurring unusual weather events worldwide with costly consequences. The cause of this propagation asymmetry is currently unknown. Here we trace the cause of the asymmetry to the variations in upper ocean currents in the equatorial Pacific, whereby the westward-flowing currents are enhanced during La Niña events but reversed during extreme El Niño events. Our results highlight that propagation asymmetry is favoured when the westward mean equatorial currents weaken, as is projected to be the case under global warming. By analysing past and future climate simulations of an ensemble of models with more realistic propagation, we find a doubling in the occurrences of El Niño events that feature prominent eastward propagation characteristics in a warmer world. Our analysis thus suggests that more frequent emergence of propagation asymmetry will be an indication of the Earth's warming climate.


Assuntos
Simulação por Computador , El Niño Oscilação Sul/história , Aquecimento Global , História do Século XX , Oceano Pacífico , Estações do Ano , Movimentos da Água , Tempo (Meteorologia)
10.
Science ; 338(6107): 604; author reply 604, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23118168

RESUMO

Matei et al. (Reports, 6 January 2012, p. 76) claim to show skillful multiyear predictions of the Atlantic Meridional Overturning Circulation (AMOC). However, these claims are not justified, primarily because the predictions of AMOC transport do not outperform simple reference forecasts based on climatological annual cycles. Accordingly, there is no justification for the "confident" prediction of a stable AMOC through 2014.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA