Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Chem Biol ; 19(10): 1267-1275, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37710073

RESUMO

Despite wide appreciation of the biological role of nitric oxide (NO) synthase (NOS) signaling, questions remain about the chemical nature of NOS-derived bioactivity. Here we show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase and directly activate the sGC-cGMP-PKG pathway without intermediacy of free NO. The NO-ferroheme species (with or without a protein carrier) efficiently relax isolated blood vessels and induce hypotension in rodents, which is greatly potentiated after the blockade of NOS activity. While free NO-induced relaxations are abolished by an NO scavenger and in the presence of red blood cells or blood plasma, a model compound, NO-ferroheme-myoglobin preserves its vasoactivity suggesting the physiological relevance of NO-ferroheme species. We conclude that NO-ferroheme behaves as a signaling entity in the vasculature.


Assuntos
Eritrócitos , Óxido Nítrico , Heme , Transdução de Sinais
2.
Redox Biol ; 48: 102209, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34915448

RESUMO

RATIONALE: Dietary nitrate and nitrite have a notoriously bad reputation because of their proposed association with disease, in particular cancer. However, more recent lines of research have challenged this dogma suggesting that intake of these anions also possess beneficial effects after in vivo conversion to the vital signaling molecule nitric oxide. Such effects include improvement in cardiovascular, renal and metabolic function, which is partly mediated via reduction of oxidative stress. A recent study even indicates that low dose of dietary nitrite extends life span in fruit flies. METHODS: In this study, 200 middle-aged Wistar rats of both sexes were supplemented with nitrate or placebo in the drinking water throughout their remaining life and we studied longevity, biochemical markers of disease, vascular reactivity along with careful determination of the cause of death. RESULTS: Dietary nitrate did not affect life span or the age-dependent changes in markers of oxidative stress, kidney and liver function, or lipid profile. Ex vivo examination of vascular function, however, showed improvements in endothelial function in rats treated with nitrate. Neoplasms were not more common in the nitrate group. CONCLUSION: We conclude that chronic treatment with dietary nitrate does not affect life span in rats nor does it increase the incidence of cancer. In contrast, vascular function was improved by nitrate, possibly suggesting an increase in health span.

3.
Redox Biol ; 39: 101836, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360353

RESUMO

BACKGROUND: Renal ischemia-reperfusion (IR) injury is a common cause of acute kidney injury (AKI), which is associated with oxidative stress and reduced nitric oxide (NO) bioactivity and increased risk of developing chronic kidney disease (CKD) and cardiovascular disease (CVD). New strategies that restore redox balance may have therapeutic implications during AKI and associated complications. AIM: To investigate the therapeutic value of boosting the nitrate-nitrite-NO pathway during development of IR-induced renal and cardiovascular dysfunction. METHODS: Male C57BL/6 J mice were given sodium nitrate (10 mg/kg, i. p) or vehicle 2 h prior to warm ischemia of the left kidney (45 min) followed by sodium nitrate supplementation in the drinking water (1 mmol/kg/day) for the following 2 weeks. Blood pressure and glomerular filtration rate were measured and blood and kidneys were collected and used for biochemical and histological analyses as well as renal vessel reactivity studies. Glomerular endothelial cells exposed to hypoxia-reoxygenation, with or without angiotensin II, were used for mechanistic studies. RESULTS: IR was associated with reduced renal function and slightly elevated blood pressure, in combination with renal injuries, inflammation, endothelial dysfunction, increased Ang II levels and Ang II-mediated vasoreactivity, which were all ameliorated by nitrate. Moreover, treatment with nitrate (in vivo) and nitrite (in vitro) restored NO bioactivity and reduced mitochondrial oxidative stress and injuries. CONCLUSIONS: Acute treatment with inorganic nitrate prior to renal ischemia may serve as a novel therapeutic approach to prevent AKI and CKD and associated risk of developing cardiovascular dysfunction.


Assuntos
Nitratos , Traumatismo por Reperfusão , Animais , Células Endoteliais , Isquemia/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitratos/metabolismo , Estresse Oxidativo , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
4.
Nitric Oxide ; 97: 48-56, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032718

RESUMO

BACKGROUND/PURPOSE: Unhealthy dietary habits contribute to the increasing incidence of metabolic syndrome and type 2 diabetes (T2D), which is accompanied by oxidative stress, compromised nitric oxide (NO) bioavailability and increased cardiovascular risk. Apart from lifestyle changes, biguanides such as metformin are the first-line pharmacological treatment for T2D. Favourable cardiometabolic effects have been demonstrated following dietary nitrate supplementation to boost the nitrate-nitrite-NO pathway. Here we aim to compare the therapeutic value of inorganic nitrate and metformin alone and their combination in a model of cardiometabolic disease. EXPERIMENTAL APPROACH: Mice were fed control or high fat diet (HFD) for 7 weeks in combination with the NO synthase (NOS) inhibitor l-NAME to induce metabolic syndrome. Simultaneously, the mice were treated with vehicle, inorganic nitrate, metformin or a combination of nitrate and metformin in (drinking water). Cardiometabolic functions were assessed in vivo and tissues were collected/processed for analyses. KEY RESULTS: HFD + L-NAME was associated with cardiometabolic dysfunction, compared with controls, as evident from elevated blood pressure, endothelial dysfunction, impaired insulin sensitivity and compromised glucose clearance as well as liver steatosis. Both nitrate and metformin improved insulin/glucose homeostasis, whereas only nitrate had favourable effects on cardiovascular function and steatosis. Mechanistically, metformin and nitrate improved AMPK signalling, whereas only nitrate attenuated oxidative stress. Combination of nitrate and metformin reduced HbA1c and trended to further increase AMPK activation. CONCLUSION/IMPLICATIONS: Nitrate and metformin had equipotent metabolic effects, while nitrate was superior regarding protection against cardiovascular dysfunction and liver steatosis. If reproduced in future clinical trials, these findings may have implications for novel nutrition-based strategies against metabolic syndrome, T2D and associated complications.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Modelos Animais de Doenças , Metformina/uso terapêutico , Nitratos/uso terapêutico , Administração Oral , Animais , Doenças Cardiovasculares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inibidores Enzimáticos/farmacologia , Masculino , Metformina/administração & dosagem , Metformina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Nitratos/administração & dosagem , Nitratos/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo
5.
Free Radic Biol Med ; 145: 342-348, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31600544

RESUMO

Nitric oxide (NO) is a key signalling molecule in the regulation of cardiometabolic function and impaired bioactivity is considered to play an important role in the onset and progression of cardiovascular and metabolic disease. Research has revealed an alternative NO-generating pathway, independent of NO synthase (NOS), in which the inorganic anions nitrate (NO3-) and nitrite (NO2-) are serially reduced to form NO. This work specifically aimed at investigating the role of commensal bacteria in bioactivation of dietary nitrate and its protective effects in a model of cardiovascular and metabolic disease. In a two-hit model, germ-free and conventional male mice were fed a western diet and the NOS inhibitor l-NAME in combination with sodium nitrate (NaNO3) or placebo (NaCl) in the drinking water. Cardiometabolic parameters including blood pressure, glucose tolerance and body composition were measured after six weeks treatment. Mice in both placebo groups showed increased body weight and fat mass, reduced lean mass, impaired glucose tolerance and elevated blood pressure. In conventional mice, nitrate treatment partly prevented the cardiometabolic disturbances induced by a western diet and l-NAME. In contrast, in germ-free mice nitrate had no such beneficial effects. In separate cardiovascular experiments, using conventional and germ-free animals, we assessed NO-like signalling downstream of nitrate by administration of sodium nitrite (NaNO2) via gavage. In this acute experimental setting, nitrite lowered blood pressure to a similar degree in both groups. Likewise, isolated vessels from germ-free mice robustly dilated in response to the NO donor sodium nitroprusside. In conclusion, our findings demonstrate the obligatory role of host-microbiota in bioactivation of dietary nitrate, thus contributing to its favourable cardiometabolic effects.


Assuntos
Doenças Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/microbiologia , Sistema Cardiovascular/patologia , Dieta Ocidental/efeitos adversos , Humanos , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Nitratos/farmacologia , Óxido Nítrico Sintase/genética , Nitritos/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
Front Physiol ; 10: 491, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114507

RESUMO

Inflammation in the central nervous system is being considered a key player linked to neurogenic hypertension. Using combined in vivo and in vitro approaches, we investigated the effects of central inhibition of TNF-α on blood pressure, sympathetic tone, baroreflex sensitivity, and oxidative stress in the rostral ventrolateral medulla (RVLM) of rats with 2-kidney-1-clip (2K1C) renovascular hypertension. Continuous infusion of pentoxifylline, a TNF-α inhibitor, into the lateral ventricle of the brain for 14 consecutive days reduced blood pressure and improved baroreflex sensitivity in renovascular hypertensive rats. Furthermore, central TNF-α inhibition reduced sympathetic modulation and blunted the increased superoxide accumulation in the RVLM of 2K1C rats. Our findings suggest that TNF-α play an important role in the maintenance of sympathetic vasomotor tone and increased oxidative stress in the RVLM during renovascular hypertension.

7.
Hypertension ; 73(4): 839-848, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30712424

RESUMO

Several experimental and clinical studies have shown that dietary nitrate supplementation can increase nitric oxide bioavailability. In the oral cavity, commensal bacteria reduce nitrate to nitrite, which is subsequently absorbed into the circulation where reduction to nitric oxide by enzymatic systems occur. Although it is well-known that boosting the nitrate-nitrite-nitric oxide pathway can improve cardiovascular, renal, and metabolic functions and that sympathoexcitation contributes to the development of the same disorders, the potential effects of dietary nitrate on sympathetic activity remain to be elucidated. In this study, we hypothesized that treatment with inorganic nitrate could prevent the increase in sympathetic nerve activity in an experimental model of Ang II (angiotensin II)-induced hypertension. Multiple in vivo approaches were combined, that is, Wistar rats orally treated with the nitric oxide synthase inhibitor L-NAME (N(G)-nitro-L-arginine methyl ester, 0.5 g/L) and implanted with subcutaneous osmotic minipump for continuous delivery of Ang II (120 ng/kg per minute; 14 days). Simultaneously, rats were supplemented with sodium nitrate (10 mmol/L) or placebo (sodium chloride; 10 mmol/L) in the drinking water. Blood pressure, heart rate, and renal sympathetic nerve activity were recorded. In placebo-treated rats, Ang II+L-NAME treatment-induced arterial hypertension, which was linked with reduced spontaneous baroreflex sensitivity and increased renal sympathetic nerve activity, as well as upregulation of AT1Rs (Ang II type-1 receptors) in the rostral ventrolateral medulla. Supplementation with nitrate normalized the expression of AT1Rs in rostral ventrolateral medulla and reduced sympathetic nerve activity, which was associated with attenuated development of hypertension. In conclusion, chronic dietary nitrate supplementation blunted the development of hypertension via mechanisms that involve reduction of sympathetic outflow.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Hipertensão/terapia , Nitratos/farmacologia , Sistema Nervoso Simpático/fisiopatologia , Angiotensina II/toxicidade , Animais , Barorreflexo/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar
8.
Clin Sci (Lond) ; 132(14): 1513-1527, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29903768

RESUMO

TRV027 is a biased agonist for the Angiotensin (Ang)-II type 1 receptor (AT1R), able to recruit ß-arrestin 2 independently of G-proteins activation. ß-arrestin activation in the central nervous system (CNS) was suggested to oppose the effects of Ang-II. The present study evaluates the effect of central infusion of TRV027 on arterial pressure (AP), autonomic function, baroreflex sensitivity (BRS), and peripheral vascular reactivity. Spontaneously hypertensive (SH) and Wistar Kyoto (WKY) rats were treated with TRV027 for 14 days (20 ng/h) delivered to the lateral ventricle via osmotic minipumps. Mechanistic studies were performed in HEK293T cells co-transfected with AT1R and Ang converting enzyme type 2 (ACE2) treated with TRV027 (100 nM) or Ang-II (100 nM). TRV027 infusion in SH rats (SHR) reduced AP (~20 mmHg, P<0.05), sympathetic vasomotor activity (ΔMAP = -47.2 ± 2.8 compared with -64 ± 5.1 mmHg, P<0.05) and low-frequency (LF) oscillations of AP (1.7 ± 0.2 compared with 5.8 ± 0.4 mmHg, P<0.05) compared with the SHR control group. TRV027 also increased vagal tone, improved BRS, reduced the reactivity of mesenteric arteries to Ang-II and increased vascular sensitivity to phenylephrine (Phe), acetylcholine, (ACh), and sodium nitroprusside (SNP). In vitro, TRV027 prevented the Ang-II-induced up-regulation of ADAM17 and in contrast with Ang-II, had no effects on ACE2 activity and expression levels. Furthermore, TRV027 induced lesser interactions between AT1R and ACE2 compared with Ang-II. Together, these data suggest that due to its biased activity for the ß-arrestin pathway, TRV027 has beneficial effects within the CNS on hypertension, autonomic and vascular function, possibly through preserving ACE2 compensatory activity in neurones.


Assuntos
Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Oligopeptídeos/farmacologia , Angiotensina II/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Células HEK293 , Humanos , Hipertensão/fisiopatologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Peptidil Dipeptidase A/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/metabolismo , Vasoconstritores/farmacologia
9.
Temperature (Austin) ; 2(4): 543-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27227074

RESUMO

We recently reported that provocative motion (rotation in a home cage) causes hypothermic responses in rats, similar to the hypothermic responses associated with motion sickness in humans. Many stimuli inducing emesis in species with an emetic reflex also provoke hypothermia in the rat, therefore we hypothesized that a fall in body temperature may reflect a "nausea-like" state in these animals. As rats do not possess an emetic reflex, we employed a pharmacological approach to test this hypothesis. In humans, motion- and chemically-induced nausea have differential sensitivity to anti-emetics. We thus tested whether the hypothermia induced in rats by provocative motion (rotation at 0.7 Hz) and by the emetic LiCl (63 mg/kg i.p.) have a similar differential pharmacological sensitivity. Both provocations caused a comparable robust fall in core body temperature (-1.9 ± 0.3°C and -2.0 ± 0.2°C for chemical and motion provocations, respectively). LiCl(-)induced hypothermia was completely prevented by ondansetron (2mg/kg, i.p., a 5-HT3 receptor antagonist that reduces cancer chemotherapy-induced nausea and vomiting), but was insensitive to promethazine (10 mg/kg, i.p., a predominantly histamine-H1 and muscarinic receptor antagonist that is commonly used to treat motion sickness). Conversely, motion-induced hypothermia was unaffected by ondansetron but promethazine reduced the rate of temperature decline from 0.20 ± 0.02 to 0.11 ± 0.03°C/min (P < 0.05) with a trend to decrease the magnitude. We conclude that this differential pharmacological sensitivity of the hypothermic responses of vestibular vs. chemical etiology in rats mirrors the observations in other pre-clinical models and humans, and thus supports the idea that a "nausea-like" state in rodents is associated with disturbances in thermoregulation.

10.
Auton Neurosci ; 181: 31-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24418115

RESUMO

The search for new nitric oxide donors is warranted by the limitations of organic nitrates currently used in cardiology. The new organic nitrate 2-nitrate-1,3-dibuthoxypropan (NDBP) exhibited promising cardiovascular activities in previous studies. The aim of this study was to investigate the cardiorespiratory responses evoked by NDBP and to compare them to the clinically used organic nitrate nitroglycerine (NTG). Arterial pressure, heart rate and respiration were recorded in conscious adult male Wistar rats. Bolus i.v. injection of NDBP (1 to 15mg/kg; n=8) and NTG (0.1 to 5mg/kg; n=8) produced hypotension. NDBP induced bradycardia at all doses, while NTG induced tachycardia at three lower doses but bradycardia at higher doses. Hydroxocobalamin (20mg/kg; HDX), a NO scavenger, blunted hypotension induced by NDBP (15mg/kg), and its bradycardic effect (n=6). In addition, HDX blunted both hypotension and bradycardia induced by a single dose of NTG (2.5mg/kg; n=6). Both NDBP and NTG altered respiratory rate, inducing a biphasic effect with a bradypnea followed by a tachypnea; HDX attenuated these responses. Our data indicate that NDBP and NTG induce hypotension, bradycardia and bradypnea, which are mediated by nitric oxide release.


Assuntos
Pressão Arterial/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Nitratos/farmacologia , Propano/análogos & derivados , Respiração/efeitos dos fármacos , Animais , Pressão Arterial/fisiologia , Bradicardia/induzido quimicamente , Bradicardia/tratamento farmacológico , Bradicardia/fisiopatologia , Fármacos Cardiovasculares/administração & dosagem , Estado de Consciência , Relação Dose-Resposta a Droga , Frequência Cardíaca/fisiologia , Hidroxocobalamina/farmacologia , Hipotensão/induzido quimicamente , Hipotensão/tratamento farmacológico , Hipotensão/fisiopatologia , Masculino , Nitratos/administração & dosagem , Óxido Nítrico/metabolismo , Nitroglicerina/administração & dosagem , Nitroglicerina/farmacologia , Propano/administração & dosagem , Propano/farmacologia , Ratos , Ratos Wistar , Taquipneia/induzido quimicamente , Taquipneia/tratamento farmacológico , Taquipneia/fisiopatologia , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacologia
11.
Molecules ; 17(11): 13357-67, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23143148

RESUMO

Renovascular hypertension has robust effects on control of blood pressure, including an impairment in baroreflex mechanisms, which involves oxidative stress. Although α-lipoic acid (LA) has been described as a potent antioxidant, its effect on renovascular hypertension and baroreflex sensitivity (BRS) has not been investigated. In the present study we analyzed the effects caused by chronic treatment with LA on blood pressure, heart rate and baroreflex sensitivity (sympathetic and parasympathetic components) in renovascular hypertensive rats. Male Wistar rats underwent 2-Kidney-1-Clip (2K1C) or sham surgery and were maintained untouched for four weeks to develop hypertension. Four weeks post-surgery, rats were treated with LA (60 mg/kg) or saline for 14 days orally. On the 15th day mean arterial pressure (MAP) and heart rate (HR) were recorded. In addition, baroreflex sensitivity test using phenylephrine (8 µg/kg, i.v.) and sodium nitroprusside (25 µg/kg, i.v.) was performed. Chronic treatment with LA decreased blood pressure in hypertensive animals; however, no significant changes in baseline HR were observed. Regarding baroreflex, LA treatment increased the sensitivity of both the sympathetic and parasympathetic components. All parameters studied were not affected by treatment with LA in normotensive animals. Our data suggest that chronic treatment with LA promotes antihypertensive effect and improves baroreflex sensitivity in rats with renovascular hypertension.


Assuntos
Anti-Hipertensivos/administração & dosagem , Antioxidantes/administração & dosagem , Barorreflexo/efeitos dos fármacos , Hipertensão Renovascular/tratamento farmacológico , Ácido Tióctico/administração & dosagem , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA