RESUMO
Anxiety disorders are highly prevalent psychiatric disorders, characterized by a chronic course and often accompanied by comorbid symptoms that impair functionality and decrease quality of life. Despite advances in basic and clinical research in our understanding of these disorders, currently available pharmacological options are associated with limited clinical benefits and side effects that frequently lead to treatment discontinuation. Importantly, a significant number of patients do not achieve remission and live with lifelong residual symptoms that limit daily functioning. Since the 1970s, basic and clinical research on cannabidiol (CBD), a non-psychotomimetic compound found in the Cannabis sativa plant, has indicated relevant anxiolytic effects, garnering attention for its therapeutic potential as an option in anxiety disorder treatment. This chapter aims to review the history of these studies on the anxiolytic effects of CBD within the current understanding of anxiety disorders. It highlights the most compelling current evidence supporting its anxiolytic effects and explores future perspectives for its clinical use in anxiety disorders.
Assuntos
Ansiolíticos , Transtornos de Ansiedade , Canabidiol , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Humanos , Transtornos de Ansiedade/tratamento farmacológico , Ansiolíticos/uso terapêutico , AnimaisRESUMO
Cannabidiol (CBD) is one of over 200 cannabinoids present in the Cannabis plant. Unlike the plant's primary cannabinoid, delta-9-tetrahydrocannabinol (THC), CBD does not produce psychotomimetic effects nor induce dependence. Initially considered an inactive cannabinoid, interest in its pharmacological properties and therapeutic potential has grown exponentially over the last 20 years. Currently employed as a medication for certain epileptic syndromes, numerous pre-clinical and clinical studies support its potential use in various other disorders. In this chapter, we provide a brief historical overview of how this compound evolved from an "inactive substance" to a multifunctional clinical agent. Additionally, we discuss the current challenges in researching its potential therapeutic effects.
Assuntos
Canabidiol , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Canabidiol/história , Humanos , História do Século XX , História do Século XXI , Animais , Anticonvulsivantes/história , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , História do Século XIXRESUMO
Cannabidiol (CBD) is a major phytocannabinoid in the Cannabis sativa plant. In contrast to Δ9-tetrahydrocannabinol (THC), CBD does not produce the typical psychotomimetic effects of the plant. In addition, CBD has attracted increased interest due to its potential therapeutic effects in various psychiatric disorders, including schizophrenia. Several studies have proposed that CBD has pharmacological properties similar to atypical antipsychotics. Despite accumulating evidence supporting the antipsychotic potential of CBD, the mechanisms of action in which this phytocannabinoid produces antipsychotic effects are still not fully elucidated. Here, we focused on the antipsychotic properties of CBD indicated by a series of preclinical and clinical studies and the evidence currently available about its possible mechanisms. Findings from preclinical studies suggest that CBD effects may depend on the animal model (pharmacological, neurodevelopmental, or genetic models for schizophrenia), dose, treatment schedule (acute vs. repeated) and route of administration (intraperitoneal vs local injection into specific brain regions). Clinical studies suggest a potential role for CBD in the treatment of psychotic disorders. However, future studies with more robust sample sizes are needed to confirm these positive findings. Overall, although more studies are needed, current evidence indicates that CBD may be a promising therapeutic option for the treatment of schizophrenia.
Assuntos
Antipsicóticos , Canabidiol , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Humanos , Antipsicóticos/farmacologia , Animais , Esquizofrenia/tratamento farmacológicoRESUMO
We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.
Assuntos
Compostos Bicíclicos com Pontes , Canabidiol/análogos & derivados , Canabinoides , Capsaicina/análogos & derivados , Discinesia Induzida por Medicamentos , Levodopa , Ratos , Camundongos , Animais , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico , Camundongos Endogâmicos C57BL , Corpo Estriado , Oxidopamina/farmacologia , Anti-Inflamatórios/farmacologia , Modelos Animais de DoençasRESUMO
BACKGROUND: Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS: Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS: CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION: Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.
Assuntos
Analgésicos , Canabidiol , Classe Ib de Fosfatidilinositol 3-Quinase , Canais KATP , Neuralgia , Óxido Nítrico Sintase Tipo I , Óxido Nítrico , Transdução de Sinais , Animais , Canabidiol/farmacologia , Canais KATP/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Analgésicos/farmacologia , AnalgesiaRESUMO
Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.
Assuntos
Canabidiol , Neuralgia , Neuralgia do Trigêmeo , Animais , Masculino , Ratos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Dor Facial/metabolismo , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Ratos Wistar , Neuralgia do Trigêmeo/complicações , Neuralgia do Trigêmeo/tratamento farmacológicoRESUMO
Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.
Assuntos
Canabidiol , Depressão , Ratos , Masculino , Animais , Depressão/tratamento farmacológico , Depressão/genética , Canabidiol/farmacologia , Endocanabinoides/metabolismo , Sinaptofisina/metabolismo , Antidepressivos/farmacologia , Córtex Pré-Frontal , Plasticidade Neuronal , Modelos Animais de DoençasRESUMO
OBJECTIVE: The treatment of bipolar depression remains challenging due to the limited effective and safe therapeutic options available; thus, developing newer treatments that are effective and well tolerable is an urgent unmet need. The objective of the present trial was to test 150 to 300â mg/day of cannabidiol as an adjunctive treatment for bipolar depression. METHOD: A randomized, double-blind, placebo-controlled pilot study to assess the efficacy of adjunctive cannabidiol in bipolar depression was used. Efficacy parameters were changes in the Montgomery-Åsberg Depression Rating Scale (MADRS) from baseline to week 8. Secondary outcomes included response and remission rates, changes in anxiety and psychotic symptoms, and changes in functioning. Patients continued double-blind treatment until week 12 to monitor for adverse effects, laboratory analysis, and manic symptoms. Study registry: NCT03310593. RESULTS: A total of 35 participants were included. MADRS scores significantly decreased from baseline to the endpoint (placebo, -14.56; cannabidiol, -15.38), but there was no significant difference between the groups. Similarly, there were no other significant effects on the secondary outcomes. However, an exploratory analysis showed a significant effect of cannabidiol 300â mg/day in reducing MADRS scores from week 2 to week 8 (placebo, -6.64; cannabidiol, -13.72). There were no significant differences in the development of manic symptoms or any other adverse effects. CONCLUSION: Cannabidiol did not show significantly higher adverse effects than placebo. Despite the negative finding on the primary outcome, an exploratory analysis suggested that cannabidiol should be further studied in bipolar depression in higher doses of at least 300â mg/day and under research designs that could better control for high placebo response.
Assuntos
Transtorno Bipolar , Canabidiol , Transtornos Psicóticos , Humanos , Transtorno Bipolar/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Projetos Piloto , Depressão , Transtornos Psicóticos/tratamento farmacológico , Método Duplo-Cego , Resultado do TratamentoRESUMO
To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1ß in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 µM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.
Assuntos
Compostos Bicíclicos com Pontes , Canabidiol/análogos & derivados , Canabinoides , Microglia , Camundongos , Animais , Astrócitos , Lipopolissacarídeos/toxicidade , Canabinoides/farmacologia , Encéfalo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológicoRESUMO
Recent evidence has suggested that changes in maternal gut microbiota in early life may generate neurobiological consequences associated with psychiatric-related abnormalities. However, the number of studies on humans investigating this problem is limited, and preclinical findings sometimes conflict. Therefore, we run a meta-analysis to examine whether maternal microbiota disturbance (MMD) during neurodevelopment might affect the offspring during adulthood. We found thirteen studies, from a set of 459 records selected by strategy registered on PROSPERO (#289224), to target preclinical studies that evaluated the behavioral outcomes of the rodents generated by dams submitted to perinatal enteric microbiota perturbation. The analysis revealed a significant effect size (SMD = -0.51, 95% CI = -0.79 to -0.22, p < .001, T2 = 0.54, I2 = 79.85%), indicating that MMD might provoke behavioral impairments in the adult offspring. The MMD also induces a significant effect size for the reduction of the sociability behavior (SMD = -0.63, 95% CI = -1.18 to -0.07, p = 0.011, T2 = 0.30, I2 = 76.11%) and obsessive-compulsive-like behavior (SMD = -0.68, 95% CI = -0.01 to -1.36, p = 0.009, T2 = 0.25, I2 = 62.82%) parameters. The effect size was not significant or inconclusive for memory and anxiety-like behavior, or inconclusive for schizophrenia-like and depressive-like behavior. Therefore, experimental perinatal MMD is vertically transmitted to the offspring, negatively impacting behavioral parameters related to psychiatric disorders.
Assuntos
Microbioma Gastrointestinal , Transtornos Mentais , Microbiota , Feminino , Adulto , Gravidez , Humanos , AnsiedadeRESUMO
Introduction: Prosocial behavior refers to sharing emotions and sensations such as pain. Accumulated data indicate that cannabidiol (CBD), a nonpsychotomimetic component of the Cannabis sativa plant, attenuates hyperalgesia, anxiety, and anhedonic-like behavior. Nevertheless, the role of CBD in the social transfer of pain has never been evaluated. In this study, we investigated the effects of acute systemic administration of CBD in mice that cohabited with a conspecific animal suffering from chronic constriction injury. Furthermore, we assessed whether repeated CBD treatment decreases hypernociception, anxiety-like behavior, and anhedonic-like responses in mice undergoing chronic constriction injury and whether this attenuation would be socially transferred to the partner. Materials and Methods: Male Swiss mice were Housed in pairs for 28 days. On the 14th day of living together, animals were then divided into two groups: cagemate nerve constriction (CNC), in which one animal of each partner was subjected to sciatic nerve constriction; and cagemate sham (CS), subjected to the same surgical procedure but without suffering nerve constriction. In Experiments 1, 2, and 3 on day 28 of living together, the cagemates (CNC and CS) animals received a single systemic injection (intraperitoneally) of vehicle or CBD (0.3, 1, 10, or 30 mg/kg). After 30 min, the cagemates were subjected to the elevated plusmaze followed by exposure to the writhing and sucrose splash tests. For chronic treatment (Exp. 4), sham and chronic constriction injury animals received a repeated systemic injection (subcutaneous) of vehicle or CBD (10 mg/kg) for 14 days after the sciatic nerve constriction procedure. On days 28 and 29 sham and chronic constriction injury animals and their cagemates were behaviorally tested. Results and Conclusion: Acute CBD administration attenuated anxiety-like behavior, pain hypersensitivity, and anhedonic-like behavior in cagemates that cohabited with a pair in chronic pain. In addition, repeated CBD treatment reversed the anxiety-like behavior induced by chronic pain and enhanced the mechanical withdrawal thresholds in Von Frey filaments and the grooming time in the sucrose splash test. Moreover, repeated CBD treatment effects were socially transferred to the chronic constriction injury cagemates.
RESUMO
Cannabidiol (CBD) is the most abundant non-psychoactive component found in plants of the genus Cannabis. Its analgesic effect for the treatment of neuropathy has been widely studied. However, little is known about its effects in the acute treatment when Cannabidiol is administered peripherally. Because of that, this research was aimed to evaluate the antinociceptive effects of the CBD when administered peripherally for the treatment of acute neuropathic pain and check the involvement of the 5-HT1A and the TRPV1 receptors in this event. Neuropathic pain was induced with the constriction of the sciatic nerve while the nociceptive threshold was measured using the pressure test of the mouse paw. The technique used proved to be efficient to induce neuropathy, and the CBD (5, 10 and 30 µg/paw) induced the antinociception in a dosage-dependent manner. The dosage used that induced a more potent effect (30 µg/paw), did not induce a systemic response, as demonstrated by both the motor coordination assessment test (RotaRod) and the antinociceptive effect restricted to the paw treated with CBD. The administration of NAN-190 (10 µg/paw), a selective 5-HT1A receptor antagonist, and SB-366791 (16 µg/paw), a selective TRPV1 antagonist, partially reversed the CBD-induced antinociception. The results of the research suggest that the CBD produces the peripheral antinociception during the acute treatment of the neuropathic pain and it partially involved the participation of the 5-HT1A and TRPV1 receptors.
Assuntos
Canabidiol , Neuralgia , Camundongos , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Serotonina , Neuralgia/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptor 5-HT1A de Serotonina , Canais de Cátion TRPVRESUMO
The endocannabinoid (eCB) anandamide (AEA) is synthesized on-demand in the post-synaptic terminal and can act on presynaptic cannabinoid type 1 (CB1) receptors, decreasing the release of neurotransmitters, including glutamate. AEA action is ended through enzymatic hydrolysis via FAAH (fatty acid amid hydrolase) in the post-synaptic neuron. eCB system molecules are widely expressed in brain areas involved in the modulation of fear and anxiety responses, including the Bed Nucleus of the Stria Terminalis (BNST), which is involved in the integration of autonomic, neuroendocrine, and behavioral regulation. The presence of the CB1 and FAAH was described in the BNST; however, their role in the modulation of defensive reactions is not fully comprehended. In the present work we aimed at investigating the role of AEA and CB1 receptors in the BNST in modulating anxiety-related behaviors. Adult male Wistar rats received local BNST injections of the CB1 receptor antagonist AM251 (0.1-0.6 nmol) and/or the FAAH inhibitor (URB597; 0.001-0.1 nmol) and were evaluated in the elevated plus maze (EPM) test, with or without previous acute restraint stress (2 h) exposure, or in the contextual fear conditioning. We observed that although AM251 and URB597 had no effects on the EPM, they increased and decreased, respectively, the conditioned fear response. Supporting a possible influence of stress in these differences, URB597 was able to prevent the restraint stress-induced anxiogenic effect in the EPM. The present data, therefore, suggest that eCB signaling in the BNST is recruited during more aversive situations to counteract the stress effect.
Assuntos
Canabinoides , Núcleos Septais , Animais , Masculino , Ratos , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Canabinoides/farmacologia , Endocanabinoides/farmacologia , Ratos Wistar , Receptor CB1 de CanabinoideRESUMO
Introduction: Empathy is a fundamental prosocial behavior. It has been defined as perception, awareness, and understanding of others' emotional states, including painful processes. Mice living in pairs with conspecific chronic suffering from constriction injury exhibit pain hypersensitivity mediated by the amygdaloid complex. Nevertheless, the underlying mechanisms in the amygdala responsible for this response remain to be determined. This study investigated if the anxiolytic benzodiazepine midazolam (MDZ) and cannabidiol (CBD), a phytocannabinoid with multiple molecular targets, would attenuate this behavioral change. We also investigated if serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the amygdala are involved in this effect. Materials and Methods: Male Swiss mice were housed in pairs for 28 days. The pairs were divided into two groups on the 14th day: cagemate nerve constriction and cagemate sham. On the 24th day, cagemates underwent a stereotaxic surgery and, on the 28th day, were evaluated on the writhing test. Results: The results showed that living with chronic pain leads to hypernociception in the cagemate and increases the expression of 5-HT3 receptor (5-HT3R) and glutamic acid decarboxylase 67 within the amygdala. MDZ (3.0 and 30 nmol) and CBD (30 and 60 nmol) attenuated the hypernociceptive behavior. The 5-HT3R antagonist ondansetron (0.3 nmol) prevented the antinociceptive effects of MDZ and CBD. Conclusion: These findings indicate that 5-HT3R and GABAergic mechanisms within the amygdala are involved in the pain hypersensitivity induced by the empathy for pain model. They also suggest that MDZ and CBD could be a new potential therapy to alleviate emotional pain disorders.
Assuntos
Canabidiol , Midazolam , Camundongos , Masculino , Animais , Midazolam/farmacologia , Canabidiol/farmacologia , Serotonina/farmacologia , Empatia , Dor , Tonsila do CerebeloRESUMO
Resumo: Introdução: A avaliação do estudante é componente essencial de todo programa educacional. O aprendizado das ciências básicas é fundamental para dar sentido ao que se aprende na fase clínica da formação de um profissional em saúde. Entretanto, a maioria dos treinamentos de elaboradores de testes de múltipla escolha (TME) é voltada à formulação de questões clínicas e não inclui abordagem específica para questões das ciências básicas. Relato de experiência: Foi realizada uma oficina para a capacitação docente na elaboração de TME de aplicação dos conhecimentos de ciências básicas, visando à elaboração de uma prova a ser aplicada no final do ciclo básico de seis cursos da saúde. O material instrucional foi elaborado pelos autores, que ofereceram uma oficina no formato on-line. Um diferencial dessa capacitação foi a aplicação de modelos de elaboração de enunciados com contextos definidos, utilizando momentos de preparo assíncronos e encontro síncrono. Após a oficina, aplicaram-se questionários sobre a satisfação e aprendizagem dos participantes. A maioria avaliou a oficina como boa ou muito boa e referiu aumento da percepção de capacidade para elaborar TME, e, ao final, somente 7% se sentiram pouco preparados para elaborar um TME seguindo as boas práticas. Houve melhora na qualidade dos TME elaborados, tendo como referencial os índices de dificuldade e discriminação. Discussão: Existem evidências do valor do desenvolvimento do corpo docente na melhoria da qualidade das questões produzidas. O formato de oficina proposto foi bem avaliado pelos participantes e contribuiu para a qualidade das questões de provas aplicadas ao final do ciclo básico. Conclusão: Estratégias como a descrita qualificam as avaliações dentro da escola e contribuem para a organização de provas externas.
Abstract: Introduction: Student assessment is an essential component of all educational programs. Basic science learning is essential for making clinical knowledge meaningful to healthcare students. However, most item writer training is focused on the formulation of clinical questions and does not include a specific approach to basic science questions. Experience Report: Workshops on item writing for knowledge application on basic sciences were carried out with the aim of planning a test to be applied at the end of the basic cycle of six health courses. The instructional material was prepared by the authors, who offered online workshops. A differential of this training was the application of models of item lead-in elaboration with defined contexts, using moments of asynchronous preparation and synchronous encounter. After each workshop, surveys were applied to assess participants' satisfaction and learning. Most participants rated the workshop as good or very good and reported an increase in their perceived ability to prepare single best answer multiple-choice questions. At the end, only 7% reported they were not prepared to write an item following good practices. There was an improvement in the quality of the items prepared, using the difficulty and discrimination indexes as a reference. Discussion: There is evidence of the value of faculty development in improving the quality of the questions produced. The proposed workshop format was well evaluated by the participants and contributed to the quality of tests applied to students at the end of the basic science cycle. Conclusion: Strategies such this qualify assessments within the school and contribute to the organization of external exams.
RESUMO
Higher levels of interleukin (IL)-6 and elevated neutrophil counts are consistently reported in the blood of patients with schizophrenia. Stressors during childhood and/or adolescence are major socioenvironmental risk factors for schizophrenia and may contribute to immune dysregulation. Previous studies using blood cytokines to stratify patients with schizophrenia suggest that only a subset presents a low-grade inflammatory state. However, these studies have not addressed whether environmental factors such as childhood maltreatment contributed to identifying inflammatory clusters. Moreover, a neutrophil-related mechanism (Neutrophil Extracellular Traps; NETs) central to both the initiation and chronicity of autoimmune and inflammatory diseases has never been investigated in psychiatry. Elevated NETs in schizophrenia may predispose patients to inflammatory and autoimmune diseases resulting in reduced life expectancy. We, therefore, investigated NETs as a novel mechanism and biological target in early schizophrenia and their role together with IL-6 and childhood maltreatment in identifying cluster subgroups. We found increased NETs in the plasma of patients with early schizophrenia (n = 78) compared to both their unaffected siblings (n = 25) and community controls (n = 78), irrespective of sex, body mass index, psychoactive drug use, or tobacco smoking. Increased NETs in patients were unrelated to antipsychotic treatment, which was further tested in vitro using fresh neutrophils. By applying unsupervised two-step clustering analysis, we integrated values of NETs, IL-6, and childhood maltreatment scores. We identified two main clusters; childhood maltreatment scores and NETs were the most important variables contributing to cluster separation (high-CL1 and low-CL2), while IL-6 was the least contributor. Patients allocated in the high-CL1 (61.5%) had significantly higher childhood maltreatment scores, NETs, and IL-6 levels than the remaining groups (patients low-CL2, siblings, and controls high-CL1 and low-CL2). We complemented these findings with a rat model based on stress exposure during adolescence that results in several schizophrenia-like changes in adulthood. We found that adolescent stressed rats had higher NETs and IL-6 levels in serum compared to non-stressed rats with a tendency to produce more NETs from the bone marrow. Altogether, this study brings a novel cellular-based mechanism in schizophrenia that, combined with early-stress, could be useful to identify subgroups for more personalised treatments.
Assuntos
Armadilhas Extracelulares , Esquizofrenia , Estresse Psicológico , Animais , Ratos , Interleucina-6 , NeutrófilosRESUMO
Objectives: We assessed whether administering cannabidiol (CBD) before recalling the traumatic event that triggered their disorder attenuates anxiety in patients with post-traumatic stress disorder (PTSD). As an exploratory pilot analysis, we also investigated whether this effect depends on the nature of the event (sexual vs. nonsexual trauma). Methods: Thirty-three patients of both sexes with PTSD were recruited and randomized 1:1 into two groups. One group received oral CBD (300 mg), and the other received a placebo before listening to a digital audio playback of their previously recorded report of the trigger event. Subjective and physiological measurements were taken before and after recall. We analyzed the data in two subsamples: trigger events involving sexual and nonsexual trauma. Results: In the nonsexual trauma group, the differences between measurements before and after recall were significantly smaller with CBD than placebo; this held true for anxiety and cognitive impairment. However, in the sexual trauma group, the differences were non-significant for both measurements. Conclusion: A single dose of CBD (300mg) attenuated the increased anxiety and cognitive impairment induced by recalling a traumatic event in patients with PTSD when the event involved nonsexual trauma.
RESUMO
OBJECTIVES: We assessed whether administering cannabidiol (CBD) before recalling the traumatic event that triggered their disorder attenuates anxiety in patients with post-traumatic stress disorder (PTSD). As an exploratory pilot analysis, we also investigated whether this effect depends on the nature of the event (sexual vs. nonsexual trauma). METHODS: Thirty-three patients of both sexes with PTSD were recruited and randomized 1:1 into two groups. One group received oral CBD (300 mg), and the other received a placebo before listening to a digital audio playback of their previously recorded report of the trigger event. Subjective and physiological measurements were taken before and after recall. We analyzed the data in two subsamples: trigger events involving sexual and nonsexual trauma. RESULTS: In the nonsexual trauma group, the differences between measurements before and after recall were significantly smaller with CBD than placebo; this held true for anxiety and cognitive impairment. However, in the sexual trauma group, the differences were non-significant for both measurements. CONCLUSION: A single dose of CBD (300mg) attenuated the increased anxiety and cognitive impairment induced by recalling a traumatic event in patients with PTSD when the event involved nonsexual trauma.
Assuntos
Ansiolíticos , Canabidiol , Transtornos de Estresse Pós-Traumáticos , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/tratamento farmacológico , Canabidiol/uso terapêutico , Feminino , Humanos , Masculino , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologiaRESUMO
Studies with cannabidiol (CBD) suggest that this compound has anxiolytic properties and may mediate the reconsolidation and extinction of aversive memories. The objective of this study was to test whether the administration of CBD 300 mg before the recall of traumatic events attenuated symptoms usually induced by recall in subjects diagnosed with posttraumatic stress disorder (PTSD) and if its potential effects interfere with the reconsolidation of aversive memories. The double-blind trial included 33 participants of both sexes, aged between 18 and 60 years, diagnosed with PTSD according to the SCID-5 and randomly allocated to two groups treated with CBD (n = 17) and placebo (n = 16). In the first experimental section, participants were matched by sex, age, body mass index (BMI), and PTSD symptoms as assessed with the Posttraumatic Stress Disorder Checklist (PCL-5). On the same day, participants prepared the behavior test, recording accounts of their traumas in digital audio for a minute and a half and then imagining the trauma for 30 s. After 7 days, participants received CBD (300 mg) or placebo and performed the behavioral test, listening to the trauma account and imagining themselves in that situation. Before and after the behavioral test, subjective changes in mood and anxiety were recorded (Visual and Analogical Mood Scale - VAMS and STAI-state), along with physiological correlates of anxiety blood pressure (BP), heart rate (HR), and salivary cortisol (SC). Seven days later, participants underwent the same procedures as the previous session, but without the pharmacological intervention, to assess the effect on reconsolidation of traumatic memories. We found that CBD significantly attenuated the increase in the VAMS scale cognitive impairment factor scores, under the CBD's effect, with this effect remaining 1 week after drug administration. No significant differences between the effects of CBD and placebo on anxiety, alertness, and discomfort induced by the recall of the traumatic event during the pharmacological intervention and in the subsequent week, in the absence of it. There were no significant differences between the CBD and placebo groups regarding physiological data (BP, HR, and SC). The attenuation of cognitive impairments during trauma recall under the effect of CBD may have interfered with the reconsolidation of traumatic memories concerning its association with cognitive impairments.
Assuntos
Canabidiol , Transtornos de Estresse Pós-Traumáticos , Adolescente , Adulto , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Ansiedade/psicologia , Transtornos de Ansiedade/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Feminino , Humanos , Masculino , Rememoração Mental , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/psicologia , Adulto JovemRESUMO
Chemotherapy-induced peripheral neuropathy (CIPN) is the main dose-limiting adverse effect of chemotherapy drugs such as paclitaxel (PTX). PTX causes marked molecular and cellular damage, mainly in the peripheral nervous system, including sensory neurons in the dorsal root ganglia (DRG). Several studies have shown the therapeutic potential of cannabinoids, including cannabidiol (CBD), the major non-psychotomimetic compound found in the Cannabis plant, to treat peripheral neuropathies. Here, we investigated the efficacy of PECS-101 (former HUF-101), a CBD fluorinated analog, on PTX-induced neuropathic pain in mice. PECS-101, administered after the end of treatment with PTX, did not reverse mechanical allodynia. However, PECS-101 (1 mg/kg) administered along with PTX treatment caused a long-lasting relief of the mechanical and cold allodynia. These effects were blocked by a PPARγ, but not CB1 and CB2 receptor antagonists. Notably, the effects of PECS-101 on the relief of PTX-induced mechanical and cold allodynia were not found in macrophage-specific PPARγ-deficient mice. PECS-101 also decreased PTX-induced increase in Tnf, Il6, and Aif1 (Iba-1) gene expression in the DRGs and the loss of intra-epidermal nerve fibers. PECS-101 did not alter motor coordination, produce tolerance, or show abuse potential. In addition, PECS-101 did not interfere with the chemotherapeutic effects of PTX. Thus, PECS-101, a new fluorinated CBD analog, could represent a novel therapeutic alternative to prevent mechanical and cold allodynia induced by PTX potentially through the activation of PPARγ in macrophages.