Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 12881-12895, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524454

RESUMO

Green zinc oxide nanoparticles (ZnO NPs) synthesized using Stevia rebaudiana as a reducing agent were investigated as ecofriendly adsorbents for the removal of the antibiotics ciprofloxacin (CIP) and tetracycline (TET) from water. Green ZnO NPs were synthesized using a rapid novel approach that did not require annealing or calcination at high temperatures to produce mesoporous NPs with a size range of 37.36-71.33 nm, a specific surface area of 15.28 m2/g, and a negative surface charge of -15 mV at pH 5. The green ZnO NPs exhibited an antioxidant activity of 85.57% at 250 µg/mL and an antibacterial activity with MIC and MBC of 50 and 100 mg/mL, respectively, against both Escherichia coli and Staphylococcus aureus. The best adsorption performance was achieved using a 4 g/L dose and pH 5, yielding, respectively, 86.77 ± 0.82% removal and 27.07 ± 0.26 mg/g adsorption capacity for CIP at 10 mg/L and 67.86 ± 3.41% and 15.88 ± 0.37 mg/g for TET at 25 mg/L. The green ZnO NPs achieved 79.71% ± 0.28 and 61.55% ± 0.53 removal of 10 mg/L CIP and 25 mg/L TET, respectively, in a spiked tap water binary system of the two contaminants. Adsorption of CIP and TET occurred mainly via electrostatic interactions, whereby CIP was bound more strongly than TET by virtue of its charge and size. The synthesis and adsorption processes were evaluated by a stepwise regression statistical model to optimize their parameters. Lastly, the green ZnO NPs were regenerated and reused for 5 cycles, indicating their functionality as simple, reusable, and low-cost adsorbents for the removal of CIP and TET from wastewater, in accordance with SDGs #6 and 12 for the sustainable management of water.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33989131

RESUMO

Accidentally present contaminants or intentionally added adulterants in milk lead potentially to delivering not only unhealthy but seriously hazardous products. Thorough, fast and sensitive analytical tools are essential for monitoring of milk quality, and for screening of any objectionable contaminants. Biosensors represent an innovative, time-efficient and on-site solution to assess milk quality in addition to their specificity towards target analytes alongside high accuracy within such complex matrices. Most biosensors use antibodies, aptamers or enzymes as the bio-receptor and rely on optical, electrochemical or thermometric transduction to generate a signal. The simplest biosensors appear to be those based on a colorimetric assay, being simple and having a signal that can be detected visually. Electrochemical sensors are more specific and sensitive, though with more complicated designs, whereas thermometric sensors have not been thoroughly explored concerning biosensing contaminants in milk. This review discusses recent advances in the field of biosensors and analyzes the various methods of bio-recognition and transduction with regard to their advantages, limitations, and application to milk products. Additionally, challenges facing further development of these strategies to fulfil the increasing demand for fast and on-line milk quality control are also presented.


Assuntos
Técnicas Biossensoriais , Contaminação de Alimentos/análise , Leite/química , Animais
3.
PLoS One ; 16(4): e0249764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857218

RESUMO

Biogenic copper nanoparticles (Cu NPs) were synthesized using the aqueous crude extract of mangrove leaves, Avicennia marina (CE). GC-MS metabolite profiling of CE showed that their carbohydrates are mainly composed of D-mannose (29.21%), D-fructose, (18.51%), L-sorbose (12.91%), D-galactose (5.47%) and D-Talose (5.21%). Ultra-fine nanoparticles of 11.60 ±4.65 nm comprising Cu2O and Cu(OH)2 species were obtained with a carbohydrate and phenolic content of 35.6±3.2% and 3.13±0.05 mgGA/g, respectively. The impact of the biogenic Cu NPs on wheat seedling growth was dose-dependent. Upon treatment with 0.06 mg/mL of Cu NPs, the growth was promoted by 172.78 ± 23.11 and 215.94 ± 37.76% for wheat root and shoot, respectively. However, the lowest relative growth % of 81.94 ± 11.70 and 72.46 ± 18.78% were recorded for wheat root and shoot, respectively when applying 0.43 mg/mL of Cu NPs. At this concentration, peroxidase activity (POX) of the germinated wheat seeds also decreased, while ascorbic acid oxidase (AAO) and polyphenol oxidase (PPO) activities increased. Higher uptake of copper was observed in the root relative to the shoot implying the accumulation of the nanoparticles in the former. The uptake was also higher than that of the commercial Cu NPs, which showed an insignificant effect on the seedling growth. By treating the wheat leaves in foliar application with 0.06 mg/mL of Cu NPs, their contents of Chlorophyll a, Chlorophyll b, and total chlorophyll were enhanced after 21 days of application. Meanwhile, the high concentration (0.43 mg/mL) of Cu NPs was the most effective in reducing the leaf content of chlorophyll (a, b, and total) after the same time of application. The findings of this study manifest the potential of utilizing controlled doses of the prepared biogenic Cu NPs for inhibition or stimulation of seedling growth.


Assuntos
Avicennia/química , Clorofila/metabolismo , Cobre/administração & dosagem , Nanopartículas/administração & dosagem , Plântula/metabolismo , Triticum/metabolismo , Cobre/química , Germinação , Nanopartículas/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA