Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20894, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017052

RESUMO

SARS-Cov-2 Omicron variant and its highly transmissible sublineages amidst news of emerging hybrid variants strengthen the evidence of its ability to rapidly spread and evolve giving rise to unprecedented future waves. Owing to the presence of isolated RBD, monomeric and trimeric Cryo-EM structures of spike protein in complex with ACE2 receptor, comparative analysis of Alpha, Beta, Gamma, Delta, and Omicron assist in a rational assessment of their probability to evolve as new or hybrid variants in future. This study proposes the role of hydration forces in mediating Omicron function and dynamics based on a stronger interplay between protein and solvent with each Covid wave. Mutations of multiple hydrophobic residues into hydrophilic residues underwent concerted interactions with water leading to variations in charge distribution in Delta and Omicron during molecular dynamics simulations. Moreover, comparative analysis of interacting moieties characterized a large number of mutations lying at RBD into constrained, homologous and low-affinity groups referred to as mutational drivers inferring that the probability of future mutations relies on their function. Furthermore, the computational findings reveal a significant difference in angular distances among variants of concern due 3 amino acid insertion (EPE) in Omicron variant that not only facilitates tight domain organization but also seems requisite for characterization of mutational processes. The outcome of this work signifies the possible relation between hydration forces, their impact on conformation and binding affinities, and viral fitness that will significantly aid in understanding dynamics of drug targets for Covid-19 countermeasures. The emerging scenario is that hydration forces and hydrophobic interactions are crucial variables to probe in mutational analysis to explore conformational landscape of macromolecules and reveal the molecular origins of protein behaviors.


Assuntos
COVID-19 , Água , Humanos , Solventes , Aminoácidos , COVID-19/genética , Exercício Físico , Mutação , Ligação Proteica
2.
J Mol Graph Model ; 120: 108422, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708643

RESUMO

Roxadustat, a small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase domain 2 (HIF-PHD2) has been recently overruled by the American Food and Drug Administration (FDA) in Phase 3 clinical trials. This study provides insights into the dynamics of Roxadustat with PHD2 and proposes two FDA-approved drugs; Pemetrexed and Valrubicin to treat chronic kidney disease (CKD). Role of chemical scaffolds such as synthetic pyrimidine-based antifolate is found critical for PHD2 inhibitory activity, which is concurrent with the experimental findings for stimulating Endogenous erythropoietin (EPO) gene expression. Furthermore, Fe+2 and Mn+2 in solution are essential for imparting structural stability to the screened carboxylic and non-carboxylic acid drugs. Comparative analysis of FDA-approved drugs namely, Roxadustat, two-hit carboxylic, and non-carboxylic-acid type compounds (Pemetrexed and Valrubicin), as well as the control ligands (KU1 and 4JR), unveil structural dynamics of Roxadustat and its failure. However, the proposed FDA compounds, Pemetrexed and Valrubicin, used to treat mesothelioma, non-small cell lung cancer, and bladder cancer should be subjected to in vitro analysis for renal anemia.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Glicina/farmacologia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Isoquinolinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Pemetrexede
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA