Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
APMIS ; 132(2): 112-121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971173

RESUMO

Human rhinovirus 16 (HRV16) may induce inflammatory and antiviral responses in the human lung vascular endothelium (ECs) and impair its barrier functions after infection. However, ECs may regain barrier and metabolic functions. Mechanisms of limitation of HRV16 infection in the lung vascular endothelium are unknown. Human lung vascular endothelium (HMVEC-L) was infected with HRV16. IFN-ß, OAS-1, and PKR expression was assessed by real-time PCR, flow cytometry, and confocal microscope. To prove the significance of IFN-ß in the limitation of HRV16 replication, HMVEC-Ls were preincubated with anti-IFN-ß Abs. To prove the involvement of OAS-1 and PKR in the IFN-dependent limitation of HRV16 replication, HMVEC-Ls were transfected with respective siRNA. HRV16 stimulated IFN-ß production and activated intracellular mechanisms of antiviral immunity based on OAS-1 and PKR activation. Blocking of IFN-ß contributed to the inhibition of intracellular mechanisms of antiviral immunity (OAS-1, PKR) and boosted replication of HRV16. Effective OAS-1 silencing by siRNA caused the increase of HRV16 copy numbers after HRV16 infection. siRNA upregulated the other genes related to the antiviral response. The infected lung vascular endothelium may limit the HRV16 infection. This limitation may be associated with the induction of IFN-ß-dependent intracellular mechanisms based on OAS-1 and PKR activity.


Assuntos
Endotélio Vascular , Pulmão , Humanos , Expressão Gênica , RNA Interferente Pequeno/genética , Interferon beta/metabolismo
2.
Curr Issues Mol Biol ; 45(10): 7915-7932, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37886943

RESUMO

Cisplatin (CDDP) is the cornerstone of standard treatment for ovarian cancer. However, the resistance of ovarian cancer cells to CDDP leads to an inevitable recurrence. One of the strategies to overcome resistance to CDDP is the combined treatment of ovarian cancer with CDDP and etoposide (VP-16), although this strategy is not always effective. This article presents a new approach to sensitize CDDP-resistant human ovarian carcinoma cells to combined treatment with CDDP and VP-16. To replicate the tumor conditions of cancers, we performed analysis under hypoxia conditions. Since CDDP and VP-16 induce DNA double-strand breaks (DSB), we introduce DSB repair inhibitors to the treatment scheme. We used novel HRR and NHEJ inhibitors: YU238259 inhibits the HRR pathway, and DDRI-18 and A12B4C3 act as NHEJ inhibitors. All inhibitors enhanced the therapeutic effect of the CDDP/VP-16 treatment scheme and allowed a decrease in the effective dose of CDDP/VP16. Inhibition of HRR or NHEJ decreased survival and increased DNA damage level, increased the amount of γ-H2AX foci, and caused an increase in apoptotic fraction after treatment with CDDP/VP16. Furthermore, delayed repair of DSBs was detected in HRR- or NHEJ-inhibited cells. This favorable outcome was altered under hypoxia, during which alternation at the transcriptome level of the transcriptome in cells cultured under hypoxia compared to aerobic conditions. These changes suggest that it is likely that other than classical DSB repair systems are activated in cancer cells during hypoxia. Our study suggests that the introduction of DSB inhibitors may improve the effectiveness of commonly used ovarian cancer treatment, and HRR, as well as NHEJ, is an attractive therapeutic target for overcoming the resistance to CDDP resistance of ovarian cancer cells. However, a hypoxia-mediated decrease in response to our scheme of treatment was observed.

4.
APMIS ; 130(11): 678-685, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35959516

RESUMO

Vascular endothelium is a semi-permeable barrier that regulates the flow of nutrients, ions, cytokines and immune cells between blood and tissues. Barrier properties of endothelium, its ability to regenerate and the potential for secretion of inflammatory mediators play a crucial role in maintaining local tissue homeostasis. The lung vascular endothelial cells were shown to be infected by human rhinovirus (HRV) and generate antiviral, inflammatory and cytopathic responses. The current study reveals that in the long-time manner, the lung vascular endothelium may efficiently limit the HRV replication via the IFN-dependent 2'-5'-oligoadenylate synthetase 1 activation. This leads to the restoration of integrity accompanied by the up-regulation of adherens and tight junctions, increase of metabolic activity and proliferation rate. Secondly, HRV16-infected cells show delayed and transient up-regulation of the expression of vascular endothelial growth factor (VEGF), fibroblast growth factor, angiopoietin 1 and 2, and neuropilin-1, as well as VEGF receptors. The lung vascular endothelium infected with HRV may limit the infection, recover in time, and regain barrier properties and metabolic functions, thus leading to the restoration of integrated barrier tissue.


Assuntos
Rhinovirus , Fator A de Crescimento do Endotélio Vascular , 2',5'-Oligoadenilato Sintetase , Angiopoietina-1/metabolismo , Antivirais , Citocinas/metabolismo , Células Endoteliais , Endotélio Vascular , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interferons , Pulmão , Neuropilina-1/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Replicação Viral
7.
J Clin Med ; 9(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244809

RESUMO

Rheumatoid arthritis (RA) is a systemic, inflammatory disease of the joints and surrounding tissues. RA manifests itself with severe joint pain, articular inflammation, and oxidative stress. RA is associated with certain types of cancer. We have assumed that RA patients' increased susceptibility to cancer may be linked with genomic instability induced by impaired DNA repair and sensitivity to DNA damaging agents. The aim of this work was to analyze the sensitivity of peripheral blood mononuclear cells (PBMCs) isolated from RA patients to DNA damaging agents: tert-butyl hydroperoxide (TBH), bleomycin, ultraviolet (UV) radiation, and methyl methanesulfonate (MMS) and calculate the repair efficiency. TBH induce oxidative DNA lesions repaired mainly by base excision repair (BER). Bleomycin induced mainly DNA double-strand breaks repaired by non-homologous end joining (NHEJ) and homologous recombination repair (HRR). We included 20 rheumatoid arthritis patients and 20 healthy controls and used an alkaline version of the comet assay with modification to measure sensitivity to DNA damaging agents and DNA repair efficiency. We found an increased number of DNA breaks and alkali-labile sites in the RA patients compared to those in the controls. Exposure to DNA damaging agents evoked the same increased damage in both groups, but we observed statistically higher PMBC sensitivity to TBH, MMS, bleomycin as well as UV. Examination of the repair kinetics of both groups revealed that the DNA lesions induced by TBH and bleomycin were more efficiently repaired in the controls than in the patients. These data suggest impaired DNA repair in RA patients, which may accelerate PBMC aging and/or lead to higher cancer incidence among RA patients.

8.
Mol Biol Rep ; 47(1): 67-76, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31583565

RESUMO

Etoposide (VP-16) is the topoisomerase 2 (Top2) inhibitor used for treating of glioma patients however at high dose with serious side effects. It induces DNA double-strand breaks (DSBs). These DNA lesions are repaired by non-homologous DNA end joining (NHEJ) mediated by DNA-dependent protein kinase (DNA-PK). One possible approach to decrease the toxicity of etoposide is to reduce the dose while maintaining the anticancer potential. It could be achieved through combined therapy with other anticancer drugs. We have assumed that this objective can be obtained by (1) a parallel topo2 α inhibition and (2) sensitization of cancer cells to DSBs. In this work we investigated the effect of two Top2 inhibitors NK314 and VP-16 in glioma cell lines (MO59 K and MO59 J) sensitized by DNA-PK inhibitor, NU7441. Cytotoxic effect of VP-16, NK314 alone and in combination on human glioblastoma cell lines, was assessed by a colorimetric assay. Genotoxic effect of anticancer drugs in combination with NU7441 was assessed by comet assay. Cell cycle distribution and apoptosis were analysed by flow cytometry. Compared with VP-16 or NK314 alone, the combined treatment significantly inhibited cell proliferation. Combination treatment was associated with a strong accumulation of DSBs, modulated cell cycle phases distribution and apoptotic cell death. NU7441 potentiated these effects and additionally postponed DNA repair. Our findings suggest that NK314 could overcome resistance of MO59 cells to VP-16 and NU7441 could serve as sensitizer to VP-16/NK314 combined treatment. The combined tripartite approach of chemotherapy could reduce the overall toxicity associated with each individual therapy, while concomitantly enhancing the anticancer effect to treat human glioma cells. Thus, the use of a tripartite combinatorial approach could be promising and more efficacious than mono therapy or dual therapy to treat and increase the survival of the glioblastoma patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Cromonas/administração & dosagem , Etoposídeo/administração & dosagem , Glioblastoma/tratamento farmacológico , Morfolinas/administração & dosagem , Fenantrenos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Glioblastoma/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA