Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Diagnostics (Basel) ; 13(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685260

RESUMO

T-cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a central role in the control of the virus. In this study, we evaluated the performance of T-Track® SARS-CoV-2, a novel CE-marked quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels in response to the S1 and NP SARS-CoV-2 antigens, in 335 participants with or without a history of SARS-CoV-2 infection and vaccination, respectively. Of the 62 convalescent donors, 100% responded to S1 and 88.7% to NP antigens. In comparison, of the 68 naïve donors, 4.4% were reactive to S1 and 19.1% to NP. Convalescent donors <50 and ≥50 years of age demonstrated a 100% S1 reactivity and an 89.1% and 87.5% NP reactivity, respectively. T-cell responses by T-Track® SARS-CoV-2 and IgG serology by recomLine SARS-CoV-2 IgG according to the time from the last immunisation (by vaccination or viral infection) were comparable. Both assays showed a persistent cellular and humoral response for at least 36 weeks post immunisation in vaccinated and convalescent donors. Our results demonstrate the very good performance of the T-Track® SARS-CoV-2 molecular assay and suggest that it might be suitable to monitor the SARS-CoV-2-specific T-cell response in COVID-19 vaccinations trials and cross-reactivity studies.

2.
Haematologica ; 106(2): 363-374, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879324

RESUMO

Recurrence of cytomegalovirus reactivation remains a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation. Monitoring cytomegalovirus-specific cellular immunity using a standardized assay might improve the risk stratification of patients. A prospective multicenter study was conducted in 175 intermediate- and high-risk allogeneic hematopoietic stem cell transplant recipients under preemptive antiviral therapy. Cytomegalovirus-specific cellular immunity was measured using a standardized IFN-γ ELISpot assay (T-Track® CMV). Primary aim was to evaluate the suitability of measuring cytomegalovirus-specific immunity after end of treatment for a first cytomegalovirus reactivation to predict recurrent reactivation. 40/101 (39.6%) patients with a first cytomegalovirus reactivation experienced recurrent reactivations, mainly in the high-risk group (cytomegalovirus-seronegative donor/cytomegalovirus-seropositive recipient). The positive predictive value of T-Track® CMV (patients with a negative test after the first reactivation experienced at least one recurrent reactivation) was 84.2% in high-risk patients. Kaplan-Meier analysis revealed a higher probability of recurrent cytomegalovirus reactivation in high-risk patients with a negative test after the first reactivation (hazard ratio 2.73; p=0.007). Interestingly, a post-hoc analysis considering T-Track® CMV measurements at day 100 post-transplantation, a time point highly relevant for outpatient care, showed a positive predictive value of 90.0% in high-risk patients. Our results indicate that standardized cytomegalovirus-specific cellular immunity monitoring may allow improved risk stratification and management of recurrent cytomegalovirus reactivation after hematopoietic stem cell transplantation. This study was registered at www.clinicaltrials.gov as #NCT02156479.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Citomegalovirus , Infecções por Citomegalovirus/diagnóstico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Estudos Prospectivos , Medição de Risco , Ativação Viral
3.
Mol Microbiol ; 92(4): 885-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24684232

RESUMO

Geranylgeranylglyceryl phosphate synthase (GGGPS) family enzymes catalyse the formation of an ether bond between glycerol-1-phosphate and polyprenyl diphosphates. They are essential for the biosynthesis of archaeal membrane lipids, but also occur in bacterial species, albeit with unknown physiological function. It has been known that there exist two phylogenetic groups (I and II) of GGGPS family enzymes, but a comprehensive study has been missing. We therefore visualized the variability within the family by applying a sequence similarity network, and biochemically characterized 17 representative GGGPS family enzymes regarding their catalytic activities and substrate specificities. Moreover, we present the first crystal structures of group II archaeal and bacterial enzymes. Our analysis revealed that the previously uncharacterized bacterial enzymes from group II have GGGPS activity like the archaeal enzymes and differ from the bacterial group I enzymes that are heptaprenylglyceryl phosphate synthases. The length of the isoprenoid substrate is determined in group II GGGPS enzymes by 'limiter residues' that are different from those in group I enzymes, as shown by site-directed mutagenesis. Most of the group II enzymes form hexamers. We could disrupt these hexamers to stable and catalytically active dimers by mutating a single amino acid that acts as an 'aromatic anchor'.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Archaea/enzimologia , Bactérias/enzimologia , Alquil e Aril Transferases/genética , Modelos Moleculares , Filogenia , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
Chembiochem ; 13(9): 1297-303, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22614947

RESUMO

We have identified the native dimer interface of heptaprenylglyceryl phosphate synthase PcrB from the bacterium Bacillus subtilis and analyzed the significance of oligomer formation for stability and catalytic activity. Computational methods predicted two different surface regions of the PcrB protomer that could be responsible for dimer formation. These bona fide interfaces were assessed both in silico and experimentally by the introduction of amino acid substitutions that led to monomerization, and by incorporation of an unnatural amino acid to allow cross-linking of the two protomers. The results showed that, in contrast to previous assumptions, PcrB uses the same interface for dimerization as the homologous geranylgeranylglyceryl phosphate synthase from Archaea. Thermal unfolding demonstrated that the monomeric proteins are only slightly less stable than wild-type PcrB. However, activity assays showed that monomerization limits the length of accepted polyprenyl pyrophosphates to three isoprene units, whereas the native PcrB substrate contains seven isoprene entities. We provide a plausible hypothesis as to how dimerization determines substrate specificity of PcrB.


Assuntos
Bacillus subtilis/enzimologia , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Multimerização Proteica , Substituição de Aminoácidos , Dimetilaliltranstransferase/genética , Estabilidade Enzimática , Modelos Moleculares , Estrutura Quaternária de Proteína , Especificidade por Substrato , Temperatura
5.
Angew Chem Int Ed Engl ; 50(35): 8188-91, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21761520

RESUMO

An archaea-type ether lipid in bacteria: PcrB, the bacterial homologue of the archaea-specific geranylgeranylglyceryl phosphate synthase, produces heptaprenylglyceryl phosphate in bacillales. The product becomes dephosphorylated and acetylated in vivo.


Assuntos
Alquil e Aril Transferases/metabolismo , Bacillales/enzimologia , Proteínas de Bactérias/metabolismo , Éter/química , Lipídeos/biossíntese , Alquil e Aril Transferases/química , Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Biocatálise , Glicerofosfatos/biossíntese , Estrutura Terciária de Proteína
6.
Biochemistry ; 47(28): 7376-84, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18558723

RESUMO

The exclusive presence of glycerol-1-phosphate dehydrogenases (G1PDH) has been postulated to be a key feature that distinguishes archaea from bacteria. However, homologues of G1PDH genes can be found in several bacterial species, among them the hitherto uncharacterized open reading frame araM from Bacillus subtilis. We produced recombinant AraM in Escherichia coli and demonstrate that the purified protein forms a homodimer that reversibly reduces dihydroxyacetone phosphate (DHAP) to glycerol-1-phosphate (G1P) in a NADH-dependent manner. AraM, which constitutes the first identified G1PDH from bacteria, has a similar catalytic efficiency as its archaeal homologues, but its activity is dependent on the presence of Ni (2+) instead of Zn (2+). On the basis of these findings and the analysis of an araM knockout mutant, we propose that AraM generates G1P for the synthesis of phosphoglycerolipids in Gram-positive bacterial species.


Assuntos
Bacillus subtilis/enzimologia , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Níquel/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Sequência Conservada , Ativação Enzimática , Glicerolfosfato Desidrogenase/deficiência , Cinética , Dados de Sequência Molecular , NAD/química , NAD/metabolismo , Fases de Leitura Aberta , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA