Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 445(7130): 896-9, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17259971

RESUMO

Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is strongly coupled to a cavity mode, it is possible to realize important quantum information processing tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots to monolithic optical cavities is a promising route to this end. However, validating the efficacy of quantum dots in quantum information applications requires confirmation of the quantum nature of the quantum-dot-cavity system in the strong-coupling regime. Here we find such confirmation by observing quantum correlations in photoluminescence from a photonic crystal nanocavity interacting with one, and only one, quantum dot located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and quantum-dot excitons is anticorrelated at the level of single quanta, proving that the mode is driven solely by the quantum dot despite an energy mismatch between cavity and excitons. When tuned to resonance, the exciton and cavity enter the strong-coupling regime of cavity QED and the quantum-dot exciton lifetime reduces by a factor of 145. The generated photon stream becomes antibunched, proving that the strongly coupled exciton/photon system is in the quantum regime. Our observations unequivocally show that quantum information tasks are achievable in solid-state cavity QED.

2.
Bone ; 38(5): 617-27, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16046206

RESUMO

Bisphosphonates are now the most widely used drugs for diseases associated with increased bone resorption, such as osteoporosis. Although bisphosphonates act directly on osteoclasts, and interfere with specific biochemical processes such as protein prenylation, their ability to adsorb to bone mineral also contributes to their potency and duration of action. The aim of the present study was to compare the binding affinities for hydroxyapatite (HAP) of 6 bisphosphonates currently used clinically and to determine the effects of these bisphosphonates on other mineral surface properties including zeta potential and interfacial tension. Affinity constants (K(L)) for the adsorption of bisphosphonates were calculated from kinetic studies on HAP crystal growth using a constant composition method at 37 degrees C and at physiological ionic strength (0.15 M). Under conditions likely to simulate bisphosphonate binding onto bone, there were significant differences in K(L) among the bisphosphonates for HAP growth (pH 7.4) with a rank order of zoledronate > alendronate > ibandronate > risedronate > etidronate > clodronate. The measurements of zeta potential show that the crystal surface is modified by the adsorption of bisphosphonates in a manner best explained by molecular charges related to the protonation of their side-chain moieties, with risedronate showing substantial differences from alendronate, ibandronate, and zoledronate. The studies of the solid/liquid interfacial properties show additional differences among the bisphosphonates that may influence their mechanisms for binding and inhibiting crystal growth and dissolution. The observed differences in kinetic binding affinities, HAP zeta potentials, and interfacial tension are likely to contribute to the biological properties of the various bisphosphonates. In particular, these binding properties may contribute to differences in uptake and persistence in bone and the reversibility of effects. These properties, therefore, have potential clinical implications that may be important in understanding differences among potent bisphosphonates, such as the apparently more prolonged duration of action of alendronate and zoledronate compared with the more readily reversible effects of etidronate and risedronate.


Assuntos
Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Difosfonatos/química , Difosfonatos/farmacologia , Cristalização , Durapatita/farmacologia , Humanos , Estresse Mecânico
3.
Phys Rev Lett ; 92(22): 220402, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15245202

RESUMO

Arbitrary atomic Bell states with two trapped ions are generated in a deterministic and preprogrammed way. The resulting entanglement is quantitatively analyzed using various measures of entanglement. For this, we reconstruct the density matrix using single qubit rotations and subsequent measurements with near-unity detection efficiency. This procedure represents the basic building block for future process tomography of quantum computations. As a first application, the temporal decay of entanglement is investigated in detail. We observe ultralong lifetimes for the Bell states Psi(+/-), close to the fundamental limit set by the spontaneous emission from the metastable upper qubit level and longer than all reported values by 3 orders of magnitude.

4.
Philos Trans A Math Phys Eng Sci ; 361(1808): 1363-74, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12869313

RESUMO

Quantum information processing is performed with single trapped Ca(+) ions, stored in a linear Paul trap and laser-cooled to the ground state of their harmonic quantum motion. Composite laser-pulse sequences were used to implement SWAP gate, phase gate and controlled-NOT gate operations. Stark shifts on the quantum-bit transitions were precisely measured and compensated. For a demonstration of quantum information processing, a Deutsch-Jozsa algorithm has been implemented using two quantum bits encoded on a single ion.

5.
Phys Rev Lett ; 90(14): 143602, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12731916

RESUMO

Using optical Ramsey interferometry, we precisely measure the laser-induced ac-Stark shift on the S(1/2)-D(5/2) "quantum bit" transition near 729 nm in a single trapped 40Ca+ ion. We cancel this shift using an additional laser field. This technique is of particular importance for the implementation of quantum information processing with cold trapped ions. As a simple application we measure the atomic phase evolution during a n x 2 pi rotation of the quantum bit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA