Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 24(2): 375-387, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853284

RESUMO

Thyroid cancer's incidence has increased by leaps and bounds over the last years and accounts for 2.8% of new cases of cancers. This increasing bar is partially assisted by enormous screening to understand the sub-clinical status. Advanced tumor growth is the leading cause of thyroid cancer-associated death. However, the complete understanding of the underlying cause is still to be disclosed. The updated clinical assessment evidenced a few major oncogenes viz. RAS, BRAF, and RET as key drivers in the development and progression of thyroid cancer. The BRAF mutation, a major cause of aggressive tumor type in papillary thyroid carcinoma, is frequently reported. The characteristic oncogenic changes imply thyroid cancer to be clinically an ideal model for targeted therapy against RET, RAS, and BRAF mutation. Though the sensitive biochemical marker assay has been improvised, the diagnosis of thyroid follicular neoplasms is still a big challenge as the biopsy aspiration cannot define the nature of the tumor in 30% of the cases. The main hurdle is assisted distinction between follicular thyroid lesions. The discrimination between follicular thyroid adenomas and carcinomas is histologically accomplished. This strictly necessitates the identification of sensitive diagnostic/prognostic markers to mitigate the risk of thyroid cancer and to avoid the unnecessary hurdles of biopsy and surgery. An array of prognostic biomarkers is being used for the diagnosis of thyroid cancer. However, Estrogen Related Receptor Gamma (ERRγ) is setting a new benchmark among the clinical biomarkers. The dramatic expression of ERRγ in thyroid cancer enables itself not only to serve as a characteristic diagnostic marker but also as a therapeutic target. Recently, we have reported that ERRγ is upregulated in 96 papillary thyroid cancer (PTC) and 26 poorly differentiated/ anaplastic thyroid cancer (ATC) samples. Various synthetic ERRγ inverse agonists viz. GSK5182, DN200434, and 24e are fully proved to modulate ERRγ expression in ATC to attain partial cure. If this finding can be assayed on a larger scale the evaluation of this marker may be warranted and informative. This review article highlights the ascending sheds of clinical biomarkers of thyroid cancer. This also reveals the clinical importance of ERRγ as an evolving diagnostic and therapeutic target in thyroid cancer.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Biomarcadores , Biópsia por Agulha Fina , Agonismo Inverso de Drogas , Estrogênios , Prognóstico , Proteínas Proto-Oncogênicas B-raf , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/genética , Dobramento de Proteína
2.
Cells ; 12(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766812

RESUMO

Previously, we reported that an inverse agonist of estrogen-related receptor gamma (ERRγ), GSK5182, enhances sodium iodide (Na+/I-) symporter (NIS) function through mitogen-activated protein (MAP) kinase signaling in anaplastic thyroid cancer cells. This finding helped us to further investigate the effects of GSK5182 on NIS function in papillary thyroid cancer (PTC) refractory to radioactive iodine (RAI) therapy. Herein, we report the effects of ERRγ on the regulation of NIS function in RAI-resistant PTC cells using GSK5182. RAI-refractory BCPAP cells were treated with GK5182 for 24 h at various concentrations, and radioiodine avidity was determined with or without potassium perchlorate (KClO4) as an NIS inhibitor. We explored the effects of GSK5182 on ERRγ, the mitogen-activated protein (MAP) kinase pathway, and iodide metabolism-related genes. We examined whether the MAP pathway affected GSK5182-mediated NIS function using U0126, a selective MEK inhibitor. A clonogenic assay was performed to evaluate the cytotoxic effects of I-131. GSK5182 induced an increase in radioiodine avidity in a dose-dependent manner, and the enhanced uptake was completely inhibited by KClO4 in BCPAP cells. We found that ERRγ was downregulated and phosphorylated extracellular signal-regulated kinase (ERK)1/2 was upregulated in BCPAP cells, with an increase in total and membranous NIS and iodide metabolism-related genes. MEK inhibitors reversed the increase in radioiodine avidity induced by GSK5182. Clonogenic examination revealed the lowest survival in cells treated with a combination of GSK5182 and I-131 compared to those treated with either GSK518 or I-131 alone. We demonstrate that an inverse agonist of ERRγ, GSK5182, enhances the function of NIS protein via the modulation of ERRγ and MAP kinase signaling, thereby leading to increased responsiveness to radioiodine in RAI-refractory papillary thyroid cancer cells.


Assuntos
Simportadores , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/metabolismo , Radioisótopos do Iodo/uso terapêutico , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/radioterapia , Iodetos/metabolismo , Agonismo Inverso de Drogas , Mitógenos , Simportadores/genética , Simportadores/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estrogênios
3.
Int J Biol Macromol ; 234: 123664, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791934

RESUMO

Lately, 3D cell culture technique has gained a lot of appreciation as a research model. Augmented with technological advancements, the area of 3D cell culture is growing rapidly with a diverse array of scaffolds being tested. This is especially the case for spheroid cultures. The culture of cells as spheroids provides opportunities for unanticipated vision into biological phenomena with its application to drug discovery, metabolic profiling, stem cell research as well as tumor, and disease biology. Spheroid fabrication techniques are broadly categorised into matrix-dependent and matrix-independent techniques. While there is a profusion of spheroid fabrication substrates with substantial biological relevance, an economical, modular, and bio-compatible substrate for high throughput production of spheroids is lacking. In this review, we posit the prospects of elastin-like polypeptides (ELPs) as a broad-spectrum spheroid fabrication platform. Elastin-like polypeptides are nature inspired, size-tunable genetically engineered polymers with wide applicability in various arena of biological considerations, has been employed for spheroid culture with profound utility. The technology offers a cheap, high-throughput, reproducible alternative for spheroid culture with exquisite adaptability. Here, we will brief the applicability of 3D cultures as compared to 2D cultures with spheroids being the focal point of the review. Common approaches to spheroid fabrication are discussed with existential limitations. Finally, the versatility of elastin-like polypeptide inspired substrates for spheroid culture has been discussed.


Assuntos
Elastina , Esferoides Celulares , Técnicas de Cultura de Células/métodos , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA