Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
ACS Med Chem Lett ; 12(7): 1116-1123, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267881

RESUMO

Both glycolate oxidase (GO) and lactate dehydrogenase A (LDHA) influence the endogenous synthesis of oxalate and are clinically validated targets for treatment of primary hyperoxaluria (PH). We investigated whether dual inhibition of GO and LDHA may provide advantage over single agents in treating PH. Utilizing a structure-based drug design (SBDD) approach, we developed a series of novel, potent, dual GO/LDHA inhibitors. X-ray crystal structures of compound 15 bound to individual GO and LDHA proteins validated our SBDD strategy. Dual inhibitor 7 demonstrated an IC50 of 88 nM for oxalate reduction in an Agxt-knockdown mouse hepatocyte assay. Limited by poor liver exposure, this series of dual inhibitors failed to demonstrate significant PD modulation in an in vivo mouse model. This work highlights the challenges in optimizing in vivo liver exposures for diacid containing compounds and limited benefit seen with dual GO/LDHA inhibitors over single agents alone in an in vitro setting.

2.
Antioxidants (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208049

RESUMO

Human peroxiredoxins (Prx) are a family of antioxidant enzymes involved in a myriad of cellular functions and diseases. During the reaction with peroxides (e.g., H2O2), the typical 2-Cys Prxs change oligomeric structure between higher order (do)decamers and disulfide-linked dimers, with the hyperoxidized inactive state (-SO2H) favoring the multimeric structure of the reduced enzyme. Here, we present a study on the structural requirements for the repair of hyperoxidized 2-Cys Prxs by human sulfiredoxin (Srx) and the relative efficacy of physiological reductants hydrogen sulfide (H2S) and glutathione (GSH) in this reaction. The crystal structure of the toroidal Prx1-Srx complex shows an extended active site interface. The loss of this interface within engineered Prx2 and Prx3 dimers yielded variants more resistant to hyperoxidation and repair by Srx. Finally, we reveal for the first time Prx isoform-dependent use of and potential cooperation between GSH and H2S in supporting Srx activity.

3.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 9): 608-615, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31475928

RESUMO

Yersinia pestis, the causative agent of bubonic plague, is one of the most lethal pathogens in recorded human history. Today, the concern is the possible misuse of Y. pestis as an agent in bioweapons and bioterrorism. Current therapies for the treatment of plague include the use of a small number of antibiotics, but clinical cases of antibiotic resistance have been reported in some areas of the world. Therefore, the discovery of new drugs is required to combat potential Y. pestis infection. Here, the crystal structure of the Y. pestis UDP-glucose pyrophosphorylase (UGP), a metabolic enzyme implicated in the survival of Y. pestis in mouse macrophages, is described at 2.17 Šresolution. The structure provides a foundation that may enable the rational design of inhibitors and open new avenues for the development of antiplague therapeutics.


Assuntos
UTP-Glucose-1-Fosfato Uridililtransferase/química , Yersinia pestis/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Peste/tratamento farmacológico , Conformação Proteica
4.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 9): 549-557, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198887

RESUMO

The production of high-quality crystals is the main bottleneck in determining the structures of proteins using X-ray crystallography. In addition to being recognized as a very effective solubility-enhancing fusion partner, Escherichia coli maltose-binding protein (MBP) has also been successfully employed as a `fixed-arm' crystallization chaperone in more than 100 cases. Here, it is reported that designed ankyrin-repeat proteins (DARPins) that bind with high affinity to MBP can promote the crystallization of an MBP fusion protein when the fusion protein alone fails to produce diffraction-quality crystals. As a proof of principle, three different co-crystal structures of MBP fused to the catalytic domain of human dual-specificity phosphatase 1 in complex with DARPins are reported.


Assuntos
Fosfatase 1 de Especificidade Dupla/química , Proteínas Ligantes de Maltose/química , Chaperonas Moleculares/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Int J Biol Macromol ; 120(Pt A): 1111-1118, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30172821

RESUMO

Aminopeptidases catalyze the hydrolysis of amino acids from the N-terminus of protein or peptide substrates. M1 family aminopeptidases are important for the pathogenicity of bacteria and play critical role in many physiological processes such as protein maturation, regulation of peptide hormone levels in humans. Most of the M1 family aminopeptidases reported till date display broad substrates specificity, mostly specific to basic and hydrophobic residues. In the current study we report the discovery of a novel M1 class aminopeptidase from Legionella pneumophila (LePepA), which cleaves only acidic residues. Biochemical and structural studies reveal that the S1 pocket is polar and positively charged. Bioinformatic analysis suggests that such active site is unique to only Legionella species and probably evolved for special needs of the microbe. Given its specific activity, LePepA could be useful in specific biotechnological applications.


Assuntos
Ácido Aspártico/química , Antígenos CD13/química , Ácido Glutâmico/química , Legionella pneumophila/enzimologia , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Humanos , Hidrólise , Legionella pneumophila/patogenicidade , Conformação Proteica , Especificidade por Substrato
6.
Protein Sci ; 27(2): 561-567, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29052270

RESUMO

The dual specificity phosphatase DUSP1 was the first mitogen activated protein kinase phosphatase (MKP) to be identified. It dephosphorylates conserved tyrosine and threonine residues in the activation loops of mitogen activated protein kinases ERK2, JNK1 and p38-alpha. Here, we report the crystal structure of the human DUSP1 catalytic domain at 2.49 Å resolution. Uniquely, the protein was crystallized as an MBP fusion protein in complex with a monobody that binds to MBP. Sulfate ions occupy the phosphotyrosine and putative phosphothreonine binding sites in the DUSP1 catalytic domain.


Assuntos
Fosfatase 1 de Especificidade Dupla/química , Fosfatase 1 de Especificidade Dupla/metabolismo , Proteínas Ligantes de Maltose/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Fosfotreonina/química , Fosfotirosina/química , Conformação Proteica , Especificidade por Substrato , Sulfatos/química
7.
Protein Sci ; 24(5): 823-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644575

RESUMO

Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases.


Assuntos
Antígenos CD13/química , Conformação Proteica , Sítios de Ligação , Antígenos CD13/metabolismo , Cristalografia por Raios X , Escherichia coli/enzimologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Ligação Proteica
8.
J Med Chem ; 58(5): 2350-7, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25699713

RESUMO

The methionine aminopeptidase (MetAP) family is responsible for the cleavage of the initiator methionine from newly synthesized proteins. Currently, there are no small molecule inhibitors that show selectivity toward the bacterial MetAPs compared to the human enzyme. In our current study, we have screened 20 α-aminophosphonate derivatives and identified a molecule (compound 15) that selectively inhibits the S. pneumonia MetAP in low micromolar range but not the human enzyme. Further bioinformatics, biochemical, and structural analyses suggested that phenylalanine (F309) in the human enzyme and methionine (M205) in the S. pneumonia MetAP at the analogous position render them with different susceptibilities against the identified inhibitor. X-ray crystal structures of various inhibitors in complex with wild type and F309M enzyme further established the molecular basis for the inhibitor selectivity.


Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Metionina/química , Metionil Aminopeptidases/antagonistas & inibidores , Fenilalanina/química , Streptococcus/enzimologia , Sequência de Aminoácidos , Aminopeptidases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Metionil Aminopeptidases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
9.
FEBS J ; 281(18): 4240-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24841365

RESUMO

Methionine aminopeptidases (MetAPs) cleave initiator methionine from ~ 70% of the newly synthesized proteins in every living cell, and specific inhibition or knockdown of this function is detrimental. MetAPs are metalloenzymes, and are broadly classified into two subtypes, type I and type II. Bacteria contain only type I MetAPs, and the active site of these enzymes contains a conserved cysteine. By contrast, in type II enzymes the analogous position is occupied by a conserved glycine. Here, we report the reactivity of the active site cysteine in a type I MetAP, MetAP1c, of Mycobacterium tuberculosis (MtMetAP1c) towards highly selective cysteine-specific reagents. The authenticity of selective modification of Cys105 of MtMetAP1c was established by using site-directed mutagenesis and crystal structure determination of covalent and noncovalent complexes. On the basis of these observations, we propose that metal ions in the active site assist in the covalent modification of Cys105 by orienting the reagents appropriately for a successful reaction. These studies establish, for the first time, that the conserved cysteine of type I MetAPs can be targeted for selective inhibition, and we believe that this chemistry can be exploited for further drug discovery efforts regarding microbial MetAPs.


Assuntos
Proteínas de Bactérias/química , Metionil Aminopeptidases/química , Mycobacterium tuberculosis/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cobalto/química , Sequência Conservada , Complexos de Coordenação/química , Cristalografia por Raios X , Cisteína/genética , Metionil Aminopeptidases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Alinhamento de Sequência
10.
J Med Chem ; 56(13): 5295-305, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23767698

RESUMO

Methionine aminopeptidases (MetAPs) are essential enzymes that make them good drug targets in cancer and microbial infections. MetAPs remove the initiator methionine from newly synthesized peptides in every living cell. MetAPs are broadly divided into type I and type II classes. Both prokaryotes and eukaryotes contain type I MetAPs, while eukaryotes have additional type II MetAP enzyme. Although several inhibitors have been reported against type I enzymes, subclass specificity is scarce. Here, using the fine differences in the entrance of the active sites of MetAPs from Mycobacterium tuberculosis , Enterococcus faecalis , and human, three hotspots have been identified and pyridinylpyrimidine-based molecules were selected from a commercial source to target these hotspots. In the biochemical evaluation, many of the 38 compounds displayed differential behavior against these three enzymes. Crystal structures of four selected inhibitors in complex with human MetAP1b and molecular modeling studies provided the basis for the binding specificity.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Metionil Aminopeptidases/antagonistas & inibidores , Pirimidinas/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Inibidores Enzimáticos/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Metionil Aminopeptidases/química , Metionil Aminopeptidases/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ligação Proteica , Piridinas/química , Pirimidinas/química , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Estereoisomerismo
11.
Protein Sci ; 21(5): 727-36, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22411732

RESUMO

Escherichia coli aminopeptidase N (ePepN) belongs to the gluzincin family of M1 class metalloproteases that share a common primary structure with consensus zinc binding motif (HEXXH-(X18)-E) and an exopeptidase motif (GXMEN) in the active site. There is one amino acid, E121 in Domain I that blocks the extended active site grove of the thermolysin like catalytic domain (Domain II) limiting the substrate to S1 pocket. E121 forms a part of the S1 pocket, while making critical contact with the amino-terminus of the substrate. In addition, the carboxylate of E121 forms a salt bridge with K319 in Domain II. Both these residues are absolutely conserved in ePepN homologs. Analogous Glu-Asn pair in tricon interacting factor F3 (F3) and Gln-Asn pair in human leukotriene A(4) hydrolase (LTA(4) H) are also conserved in respective homologs. Mutation of either of these residues individually or together substantially reduced or entirely eliminated enzymatic activity. In addition, thermal denaturation studies suggest that the mutation at K319 destabilizes the protein as much as by 3.7 °C, while E121 mutants were insensitive. Crystal structure of E121Q mutant reveals that the enzyme is inactive due to the reduced S1 subsite volume. Together, data presented here suggests that ePepN, F3, and LTA(4) H homologs adopted a divergent evolution that includes E121-K319 or its analogous pairs, and these cannot be interchanged.


Assuntos
Aminopeptidases/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Ácido Glutâmico/química , Lisina/química , Sequência de Aminoácidos , Aminopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Desnaturação Proteica , Engenharia de Proteínas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA