RESUMO
A middle ear infection occurs due to the presence of several microorganisms behind the eardrum (tympanic membrane) and is very challenging to treat due to its unique location and requires a well-designed treatment. If not treated properly, the infection can result in severe symptoms and unavoidable side effects. In this study, excellent biocompatible ethyl cellulose (EC) and biodegradable polyhydroxybutyrate (PHB) biopolymer were used to fabricate drug-loaded nanofiber scaffolds using an electrospinning technique to overcome antibiotic overdose and insufficient efficacy of drug release during treatment. PHB polymer was produced from Halomonas sp., and the purity of PHB was found to around be 90 %. Additionally, ciprofloxacin (CIP) and amoxicillin (AMX) are highly preferable since both drugs are highly effective against gram-negative and gram-positive bacteria to treat several infections. Obtained smooth nanofibers were between 116.24 and 171.82 nm in diameter and the addition of PHB polymer and antibiotics improved the morphology of the nanofiber scaffolds. Thermal properties of the nanofiber scaffolds were tested and the highest Tg temperature resulted at 229 °C. The mechanical properties of the scaffolds were tested, and the highest tensile strength resulted in 4.65 ± 6.33 MPa. Also, drug-loaded scaffolds were treated against the most common microorganisms that cause the infection, such as S.aureus, E.coli, and P.aeruginosa, and resulted in inhibition zones between 10 and 21 mm. MTT assay was performed by culturing human adipose-derived mesenchymal stem cells (hAD MSCs) on the scaffolds. The morphology of the hAD MSCs' attachment was tested with SEM analysis and hAD MSCs were able to attach, spread, and live on each scaffold even on the day of 7. The cumulative drug release kinetics of CIP and AMX from drug-loaded scaffolds were analysed in phosphate-buffered saline (pH: 7.4) within different time intervals of up to 14 days using a UV spectrophotometer. Furthermore, the drug release showed that the First-Order and Korsmeyer-Peppas models were the most suitable kinetic models. Animal testing was performed on SD rats, matrix and collagen deposition occurred on days 5 and 10, which were observed using Hematoxylin-eosin and Masson's trichrome staining. At the highest drug concentration, a better repair effect was observed. Results were promising and showed potential for novel treatment.
Assuntos
Amoxicilina , Antibacterianos , Celulose , Ciprofloxacina , Nanofibras , Celulose/química , Celulose/análogos & derivados , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Nanofibras/química , Animais , Ratos , Amoxicilina/farmacologia , Amoxicilina/química , Antibacterianos/farmacologia , Antibacterianos/química , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Humanos , Otite Média/tratamento farmacológico , Otite Média/microbiologia , Poliésteres/química , Liberação Controlada de Fármacos , Alicerces Teciduais/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Proibitinas , Portadores de Fármacos/química , MasculinoRESUMO
The polymeric nanofiber may interact and control certain regeneration processes at the molecular level to repair damaged tissues. This research focuses on the development of characterization and antibacterial capabilities of polyvinyl alcohol (PVA)/chitosan (CS) nanofibres containing fucoidan (FUC) for tissue engineering as a skin tissue substitute. A control group consisting of 13% PVA/(0.1)% CS nanofiber was prepared. To confer antibacterial properties to the nanofiber, 10, 20, and 30 mg of FUC were incorporated into this control group. The scanning electron microscope (SEM) proved the homogeneous and beadless structures of the nanofibers. The antibacterial activity of the 13% PVA/(0.1)% CS/(10, 20, 30) FUC was tested against the S.aureus and E.coli and the results showed that with FUC addition, the antibacterial activities of the nanofibers increased. The biocompatibility test was performed with a fibroblast cell line for 1, 3, and 7 days of incubation and the results demonstrated that FUC addition enhanced the bioactivity of the 13% PVA/(0.1)% CS nanofibers. In addition, the biocompatibility results showed that 13% PVA/(0.1)% CS/10 FUC had the highest viability value for all incubation periods compared to the others. In addition, the tensile test results showed that; the maximum tensile strength value was observed for 13% PVA/(0.1)% CS/10 FUC nanofibers.
Assuntos
Quitosana , Nanofibras , Quitosana/química , Álcool de Polivinil/química , Nanofibras/química , Polivinil , Engenharia Tecidual , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coliRESUMO
In this study, novel fibers were designed based on ethylcellulose (EC), loaded with different concentrations of gallic acid (GA) using the electrospinning technique, in order to investigate the potential of these materials as wound dressings. The chemical structure and morphology, along with the antimicrobial and biocompatibility tests of the EC_GA fibers were investigated. To observe the chemical interactions between the components, fourier transform infrared spectroscopy (FTIR) was used. The morphological analyzes were performed using scanning electron microscope (SEM). The uniaxial tensile test machine was used to obtain mechanical performance of the fibers. MTT assay was applied to get the biocompatibility properties of the fibers and antimicrobial test was applied to obtain the antimicrobial activity of the fibers. Based on the obtained results, the highest viability value of 67.4 % was obtained for 10%EC_100GA on the third day of incubation, demonstrating that with the addition of a higher concentration of GA, the cell viability increases. The antimicrobial tests, evaluated against Staphylococcus (S.) aureus, Escherichia (E.) coli, Pseudomonas (Ps.) aeruginosa and Candida (C.) albicans, showed a >90 % microbial reduction capacity correlated with a logarithmic reduction ranging from 0.63 to 1, for 10%EC_100 GA. In vitro release tests of GA from the fibers showed that GA was totally released from 10%EC_100 GA fibers after 2880 min, demonstrating a controlled release profile. These findings demonstrated that EC_GA fibers may be suitable for application in biomedical fields such as wound dressing materials. However, further studies should be performed to increase the biocompatibility properties of the fibers.
Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Ácido Gálico , Anti-Infecciosos/farmacologia , Staphylococcus aureus , BandagensRESUMO
BACKGROUND: A rapid and reliable diagnostic test is needed to reduce mortality through early diagnosis of invasive aspergillosis (IA) in patients with hematological malignancies. OBJECTIVE: To evaluate the efficacy of serum and bronchoalveolar lavage (BAL) Aspergillus galactomannan lateral flow assay (GM-LFA) in IA diagnosis and determine the correlation of GM-LFA with GM enzyme immunoassay (GM-EIA) in patients with hematological malignancies. METHODS: In this prospective multicenter study, we used serum and BAL fluid samples from patients with hematological malignancies and suspected IA and performed GM-LFA and GM-EIA. According to the EORTC/MSGERC criteria, patients were grouped as proven (n = 6), probable (n = 22), possible IA (n = 55), or no IA (n = 88). The performance of serum GM-LFA at 0.5 optical density index (ODI) and area under the curve (AUC) were calculated. Spearman's correlation analysis and kappa statistics were performed to determine the agreement between the tests. RESULTS: GM-LFA showed an AUC of 0.832 in proven/probable IA (sensitivity [SEN], specificity [SPE], negative predictive value [NPV], and diagnostic accuracy were 75%, 100%, 92.6%, and 93.9%, respectively, at a 0.5 ODI) versus that in no IA. A moderate positive correlation was noted between the GM-LFA and GM-EIA scores (p = 0.01). The observed agreement between the tests at 0.5 ODI was almost perfect (p < 0.001). After excluding patients who received mold-active antifungal prophylaxis or treatment, the SEN, SPE, NPV, and diagnostic accuracy for proven/probable IA were 76.2%, 100%, 93.3%, and 94.5%, respectively. CONCLUSIONS: Serum GM-LFA demonstrated high discriminatory power and good diagnostic performance for IA in patients with hematological malignancies.
Assuntos
Aspergilose , Neoplasias Hematológicas , Infecções Fúngicas Invasivas , Aspergilose Pulmonar Invasiva , Humanos , Estudos Prospectivos , Sensibilidade e Especificidade , Aspergillus , Aspergilose/diagnóstico , Aspergilose/microbiologia , Mananas , Líquido da Lavagem Broncoalveolar/microbiologia , Infecções Fúngicas Invasivas/diagnóstico , Neoplasias Hematológicas/complicações , Aspergilose Pulmonar Invasiva/diagnósticoRESUMO
In this study, a dental membrane scaffold was fabricated using a 3D printing technique, and the antimicrobial effect of pomegranate seed and peel extract were investigated. For the production of the dental membrane scaffold, a combination of polyvinyl alcohol, starch, and pomegranate seed and peel extracts was used. The aim of the scaffold was to cover the damaged area and aid in the healing process. This can be achieved due to the high antimicrobial and antioxidant content of pomegranate seed and peel extracts (PPE: PSE). Moreover, the addition of starch and PPE: PSE improved the biocompatibility of the scaffold, and their biocompatibility was tested using human gingival fibroblast (HGF) cells. The addition of PPE: PSE into the scaffolds resulted in a significant antimicrobial effect on S. aureus and E. faecalis bacteria. Moreover, different concentrations of starch (1%, 2%, 3% w/v) and pomegranate peel and seed extract (3%, 5%, 7%, 9%, and 11% PE v/v) were analyzed to obtain the ideal dental membrane structure. The optimum starch concentration was chosen as 2% w/v due to it giving the scaffold the highest mechanical tensile strength (23.8607 ± 4.0796 MPa). The pore sizes of each scaffold were studied by SEM analysis, and pore sizes were arranged between 155.86 and 280.96 µm without any plugging problems. Pomegranate seed and peel extracts were obtained by applying the standard extraction method. High-performance liquid chromatography was performed using the diode-array detection (HPLC-DAD) technique to analyze the phenolic content of the pomegranate seed and peel extracts. Two phenolic components of the pomegranate seed and peel extracts were investigated in the following amounts: fumaric acid (17.56 µg analyte/mg extract) and quinic acid (18.79 µg analyte/mg extract) in pomegranate seed extract and fumaric acid (26.95 µg analyte/mg extract) and quinic acid (33.79 µg analyte/mg extract) in pomegranate peel extract.
RESUMO
In this research, as an alternative to chemical and physical methods, environmentally and cost-effective antimicrobial zinc oxide nanoparticles (ZnO NP) were produced by the green synthesis method. The current study focuses on the production of ZnO NP starting from adequate precursor and Zingiber officinale aqueous root extracts (ginger). The produced ZnO NP was loaded into electrospun nanofibers at different concentrations for various tissue engineering applications such as wound dressings. The produced ZnO NPs and ZnO NP-loaded nanofibers were examined by Scanning Electron Microscopy (SEM) for morphological assessments and Fourier-transform infrared spectrum (FT-IR) for chemical assessments. The disc diffusion method was used to test the antimicrobial activity of ZnO NP and ZnO NP-loaded nanofibers against three representatives strains, Escherichia coli (Gram-negative bacteria), Staphylococcus aureus (Gram-positive bacteria), and Candida albicans (fungi) microorganisms. The strength and stretching of the produced fibers were assessed using tensile tests. Since water absorption and weight loss behaviors are very important in tissue engineering applications, swelling and degradation analyses were applied to the produced nanofibers. Finally, the MTT test was applied to analyze biocompatibility. According to the findings, ZnO NP-loaded nanofibers were successfully synthesized using a green precipitation approach and can be employed in tissue engineering applications such as wound dressing.
RESUMO
In this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA-Ps scaffolds are very useful structures for wound dressing applications.
Assuntos
Alginatos/química , Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Fibroblastos/metabolismo , Teste de Materiais , Impressão Tridimensional , Própole/química , Staphylococcus aureus/crescimento & desenvolvimento , Alicerces Teciduais/química , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , HumanosRESUMO
AIM: Studies analyzing viral load in COVID-19 patients and any data that compare viral load with chest computerized tomography (CT) severity are limited. This study aimed to evaluate the severity of chest CT in reverse transcriptase polymerase chain reaction (RT-PCR)-positive patients and factors associated with it. METHODOLOGY: SARS-CoV-2 RNA was extracted from nasopharyngeal swab samples by using Bio-speedy viral nucleic acid buffer. The RT-PCR tests were performed with primers and probes targeting the RdRp gene (Bioexen LTD, Turkey) and results were quantified as cycle threshold (Ct) values. Chest CT of SARS-CoV-2 RNA-positive patients (n = 730) in a period from 22 March to 20 May 2020 were evaluated. The total severity score (TSS) of chest CT ranged 0-20 and was calculated by summing up the degree of acute lung inflammation lesion involvement of each of the five lung lobes. RESULTS: Of the 284 patients who were hospitalized, 27 (9.5%) of them died. Of 236 (32.3%) patients, there were no findings on CT and 216 (91.5%) of them were outpatients (median age 35 years). TSS was significantly higher in hospitalized patients; 5.3% had severe changes. Ct values were lower among outpatients, indicating higher viral load. An inverse relation between viral load and TSS was detected in both groups. CT severity was related to age, and older patients had higher TSS (p < 0.01). CONCLUSION: Viral load was not a critical factor for hospitalization and mortality. Outpatients had considerable amounts of virus in their nasopharynx, which made them contagious to their contacts. Viral load is important in detecting early stages of COVID-19, to minimize potential spread, whereas chest CT can help identify cases requiring extensive medical care.
Assuntos
COVID-19/diagnóstico por imagem , SARS-CoV-2/genética , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/mortalidade , COVID-19/virologia , Feminino , Hospitalização , Humanos , Pulmão/diagnóstico por imagem , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Nasofaringe/diagnóstico por imagem , Nasofaringe/virologia , Pandemias , Reação em Cadeia da Polimerase , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Carga ViralRESUMO
Acute wounds are a common health problem, with millions of people affected and decreased granulation tissue formation and vascularization, it is also a big challenge for wound care researchers to promote acute wound healing around the globe. This study aims to produce and characterize Satureja cuneifolia plant extract (SC)-blended with sodium alginate (SA) /polyethylene glycol (PEG) scaffolds for the potential treatment of diabetic ulcer. SA/PEG scaffolds were prepared by adding different concentrations (1, 3, and 5 wt%) of PEG to 9 wt% SA. The morphological and chemical composition of the resulting 3D printed composite scaffolds was determined using scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), respectively. Mechanical and thermal properties, swelling, and degradation behaviours were also investigated. The release kinetics of SC were performed. The antimicrobial analysis was evaluated against Escherichia coli and Staphylococcus aureus strains. 3D printed scaffolds have shown an excellent antibacterial effect, especially against gram-positive bacteria due to the antibacterial SC extract they contain. Furthermore, the cell viability of fibroblast (L929) cells on/within scaffolds were determined by the colourimetric MTT assay. The SA/PEG/SC scaffolds show a great promising potential candidate for diabetic wound healing and against bacterial infections.