RESUMO
This study has presented specific features that are examined to remove the Trypan blue dye from the waste using Luffa sponge (LS) and modified Luffa sponge with zinc nanoparticles (ZnNPs). Peroxidase enzyme was obtained from Euphorbia amygdaloides plant and it was used with the green synthesis of Zn nanoparticles. Luffa sponge was used to be a support material for immobilized nanoparticles and it also used in remediation work. The obtained membrane forms, fibrous materials, (LS, ZnNPs-LS) were characterized with SEM and XRD. LS and ZnNPs-LS were employed as adsorbent to be used for the removal of Trypan blue dye from aqueous via batch studies. Measurements were made for the equilibrium, pH, temperature, concentration of dye with UV-visible spectrometer (590nm; for Trypan blue dye). The optimum removal of Trypan blue dye was found at pH7, the equilibrium was attained within 30min. The thermodynamic properties ΔG0, ΔH0, and ΔS0 showed that adsorption of Trypan blue dye onto LS and ZnNPs-LS were spontaneous and endothermic. The equilibrium isotherm data were analyzed using Langmuir and Freundlich models and the sorption process was described by the Langmuir isotherm with maximum monolayer adsorption capacity of 45.32 and 47.3mg/g for LS and LS-ZnNPs at 303±1°K, respectively.
Assuntos
Corantes/isolamento & purificação , Luffa/química , Nanopartículas/química , Azul Tripano/isolamento & purificação , Zinco/química , Adsorção , Corantes/química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Nanopartículas/ultraestrutura , Temperatura , Fatores de Tempo , Azul Tripano/química , Difração de Raios XRESUMO
Nanotechnology is extensively used in all parts today. Therefore, nano synthesis is also significant in all explored areas. The results of studies conducted have revealed that nanoparticle synthesis is performed by using both chemical and physical methods. It is well known that these syntheses are carried out at high charge, pressure and temperature in harsh environments. Therefore, this study investigated green synthesis method that sustains more mild conditions. In this study, quail egg yolk having high vitamin and protein content was prepared for green synthesis reaction and used for the synthesis of platinum nanoparticles in the reaction medium. Reaction situations were optimised as a function of pH, temperature, time and concentration by using quail egg yolk. The results showed that the highest platinum nanoparticles were synthesised at 20°C and pH6.0 for 4h. Also, optimal concentration of metal ions was established as 0.5mM. The synthesised platinum nanoparticles were characterised by using UV spectrum, X-ray diffraction and scanning electron microscope.