Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1183739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324716

RESUMO

Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.

2.
Commun Biol ; 5(1): 36, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017643

RESUMO

Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Poaceae/genética , Sementes/genética , China , Oryza/genética , Filogenia , Poaceae/metabolismo
3.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199611

RESUMO

Temperature influences the physiological processes and ecology of both hosts and endophytes; however, it remains unclear how long noncoding RNAs (lncRNAs) modulate the consequences of temperature-dependent changes in host-pathogen interactions. To explore the role of lncRNAs in culm gall formation induced by the smut fungus Ustilago esculenta in Zizania latifolia, we employed RNA sequencing to identify lncRNAs and their potential cis-targets in Z. latifolia and U. esculenta under different temperatures. In Z. latifolia and U. esculenta, we identified 3194 and 173 lncRNAs as well as 126 and four potential target genes for differentially expressed lncRNAs, respectively. Further function and expression analysis revealed that lncRNA ZlMSTRG.11348 regulates amino acid metabolism in Z. latifolia and lncRNA UeMSTRG.02678 regulates amino acid transport in U. esculenta. The plant defence response was also found to be regulated by lncRNAs and suppressed in Z. latifolia infected with U. esculenta grown at 25 °C, which may result from the expression of effector genes in U. esculenta. Moreover, in Z. latifolia infected with U. esculenta, the expression of genes related to phytohormones was altered under different temperatures. Our results demonstrate that lncRNAs are important components of the regulatory networks in plant-microbe-environment interactions, and may play a part in regulating culm swelling in Z. latifolia plants.


Assuntos
Doenças das Plantas/genética , Poaceae/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Endófitos/genética , Endófitos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/parasitologia , Poaceae/crescimento & desenvolvimento , Análise de Sequência de RNA , Temperatura , Ustilago/genética , Ustilago/patogenicidade
4.
Microb Pathog ; 143: 104107, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32120003

RESUMO

Ustilago esculenta, a smut fungus, can induce the formation of culm galls in Zizania latifolia, a vegetable consumed in many Asian countries. Specifically, the mycelia-teliospore (M-T) strain of U. esculenta induces the Jiaobai (JB) type of gall, while the teliospore (T) strain induces the Huijiao (HJ) type. The underlying molecular mechanism responsible for the formation of the two distinct types of gall remains unclear. Our results showed that most differentially expressed genes relevant to effector proteins were up-regulated in the T strain compared to those in the M-T strain during gall formation, and the expression of teliospore formation-related genes was higher in the T strain than the M-T strain. Melanin biosynthesis was also clearly induced in the T strain. The T strain exhibited stronger pathogenicity and greater teliospore production than the M-T strain. We evaluated the implications of the gene regulatory networks in the development of these two type of culm gall in Z. latifolia infected with U. esculenta and suggested potential targets for genetic manipulation to modify the gall type for this crop.


Assuntos
Basidiomycota/metabolismo , Expressão Gênica , Tumores de Planta/microbiologia , Poaceae/microbiologia , Basidiomycota/genética , Basidiomycota/patogenicidade , Expressão Gênica/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
5.
Plant Mol Biol ; 95(6): 533-547, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29076026

RESUMO

KEY MESSAGE: We report a transcriptome assembly and expression profiles from RNA-Seq data and identify genes responsible for culm gall formation in Zizania latifolia induced by Ustilago esculenta. The smut fungus Ustilago esculenta can induce culm gall in Zizania latifolia, which is used as a vegetable in Asian countries. However, the underlying molecular mechanism of culm gall formation is still unclear. To characterize the processes underlying this host-fungus association, we performed transcriptomic and expression profiling analyses of culms from Z. latifolia infected by the fungus U. esculenta. Transcriptomic analysis detected U. esculenta induced differential expression of 19,033 and 17,669 genes in Jiaobai (JB) and Huijiao (HJ) type of gall, respectively. Additionally, to detect the potential gall inducing genes, expression profiles of infected culms collected at -7, 1 and 10 DAS of culm gall development were  analyzed. Compared to control, we detected 8089 genes (4389 up-regulated, 3700 down-regulated) and 5251 genes (3121 up-regulated, 2130 down-regulated) were differentially expressed in JB and HJ, respectively. And we identified 376 host and 187 fungal candidate genes that showed stage-specific expression pattern, which are  possibly responsible for gall formation at the initial and later phases, respectively. Our results indicated that cytokinins play more prominent roles in regulating gall formation than do auxins. Together, our work provides general implications for the understanding of gene regulatory networks for culm gall development in Z. latifolia, and potential targets for genetic manipulation to improve the future yield   of  this crop.


Assuntos
Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Poaceae/genética , Poaceae/microbiologia , Análise de Sequência de RNA/métodos , Ustilago/fisiologia , Vias Biossintéticas/genética , Citocininas/biossíntese , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes Fúngicos , Interações Hospedeiro-Patógeno/genética , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Tumores de Planta/microbiologia , Poaceae/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transcriptoma/genética , Regulação para Cima/genética
6.
J Environ Radioact ; 129: 33-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24355402

RESUMO

The aim of the present work was to investigate the photosynthetic performance and antioxidant enzyme activities in response to γ-irradiation of an aquatic plant Zizania latifolia. The Z. latifolia seedlings at 6-leaf stage were exposed to 25, 50 and 100 Gy of γ rays from a (60)Co source. The growth parameters, chlorophyll contents, photosynthetic gas exchange, chlorophyll fluorescence, malondialdehyde (MDA) content, antioxidant enzyme activities and antioxidant contents were examined at 1-5 weeks post-irradiation (WPI). The results showed that plant height, leaf number and tiller (branch close to ground) number were significantly suppressed by 50 and 100 Gy irradiation at 5, 3-5 and 4-5 WPI, respectively, but they were not significantly different from control by 25 Gy irradiation. Chlorophyll a, chlorophyll b, and total chlorophyll contents were also found to be significantly decreased by irradiation. The net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) generally declined in a dose-dependent manner. As for the chlorophyll fluorescence parameters, maximum quantum efficiency of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII (Φ(PSII)) and photochemical quenching (qP) were observed to be significantly decreased compared to the control at 3 WPI, while non-photochemical quenching (NPQ) significantly increased by 100 Gy. γ-irradiation induced substantial increase in MDA content, ascorbate peroxidase (APX) activity, reduced ascorbate (AsA) content and reduced glutathione (GSH) content, suggesting a protective mechanism of Z. latifolia plant against oxidative stress when exposed to γ-irradiation.


Assuntos
Radioisótopos de Cobalto/toxicidade , Raios gama/efeitos adversos , Poaceae/efeitos da radiação , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Malondialdeído/metabolismo , Peroxidases/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA