Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 320: 138071, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754296

RESUMO

Aflatoxin B1 (AFB1) is a common contaminant in many foodstuffs and is considered a public health concern worldwide due to its hepatotoxicity caused by lipid metabolism disorders. However, the molecular mechanism underlying AFB1-induced lipotoxicity-dependent liver injury via regulating cholesterol metabolism remains unclear. We established a cholesterol trafficking disorder-mediated hepatic lipotoxicity model with AFB1 mixture exposure in vitro (HepaRG and HepG2 cells, 1.6 µM for 36 h) and in vivo (C57BL/6 mice, 3 mg kg-1, i.g., every other day for 6 weeks). In vitro, the interaction between lysosomal Niemann-Pick type C1 (NPC1) protein and mitochondrial translocator protein (TSPO) regulated lipotoxicity induced by AFB1 mixture exposure, including lysosomal membrane permeabilization and mitochondria-dependent necroptosis. Moreover, the downregulation of lysosomal Ras-associated protein 7a (Rab7a) enhanced the mammalian target of rapamycin complex 1 (mTORC1)-mediated disorders of cholesterol trafficking from the lysosome to mitochondria. Furthermore, cholesterol trafficking disorder-mediated hepatic lipotoxicity induced by the low-dose level of AFB1 exposure was relieved by genetic or pharmaceutic activation of Rab7a to inhibit mTORC1 in vitro and ex vivo. In vivo, mTORC1 inhibitor (Torin1, 4 mg kg-1, i.p., every other day for 3 weeks) alleviated the cholesterol trafficking disorder-mediated hepatic lipotoxicity via upregulating the molecular machinery of lysosomes and mitochondria contact mediated by NPC1 and TSPO interaction in the low dose of AFB1 exposure. Altogether, our data suggested a novel mechanism that lysosomal Rab7a-mTORC1 signaling determined the cholesterol trafficking regulated by NPC1-TSPO from the lysosome to mitochondria, which promoted hepatic lipotoxicity via lysosomal quality control and mitochondria-dependent necroptosis signaling pathways in chemical mixture exposure.


Assuntos
Aflatoxina B1 , Fígado , Animais , Camundongos , Aflatoxina B1/metabolismo , Colesterol/metabolismo , Fígado/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , proteínas de unión al GTP Rab7/metabolismo
2.
Cancers (Basel) ; 14(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159089

RESUMO

Mitochondria are highly dynamic organelles and undergo constant fission and fusion, which are both essential for the maintenance of cell physiological functions. Dysregulation of dynamin-related protein 1 (Drp1)-dependent mitochondrial dynamics is associated with tumorigenesis and the chemotherapeutic response in hepatocellular carcinoma (HCC). The enzyme cyclooxygenase-2 (COX-2) is overexpressed in most cancer types and correlates with a poor prognosis. However, the roles played by the translocation of mitochondrial COX-2 (mito-COX-2) and the interaction between mito-COX-2 and Drp1 in chemotherapeutic responses remain to be elucidated in the context of HCC. Bioinformatics analysis, paired HCC patient specimens, xenograft nude mice, immunofluorescence, transmission electron microscopy, molecular docking, CRISPR/Cas9 gene editing, proximity ligation assay, cytoplasmic and mitochondrial fractions, mitochondrial immunoprecipitation assay, and flow cytometry analysis were performed to evaluate the underlying mechanism of how mito-COX-2 and p-Drp1Ser616 interaction regulates the chemotherapeutic response via mitochondrial dynamics in vitro and in vivo. We found that COX-2 and Drp1 were frequently upregulated and confer a poor prognosis in HCC. We also found that the proportion of mito-COX-2 and p-Drp1Ser616 was increased in HCC cell lines. In vitro, we demonstrated that the enhanced mitochondrial translocation of COX-2 promotes its interaction with p-Drp1Ser616 via PTEN-induced putative kinase 1 (PINK1)-mediated Drp1 phosphorylation activation. This increase was associated with higher colony formation, cell proliferation, and mitochondrial fission. These findings were confirmed by knocking down COX-2 in HCC cells using CRISPR/Cas9 technology. Furthermore, inhibition of Drp1 using pharmacologic inhibitors (Mdivi-1) or RNA interference (siDNM1L) decreased mito-COX-2/p-Drp1Ser616 interaction-mediated mitochondrial fission, and increased apoptosis in HCC cells treated with platinum drugs. Moreover, inhibiting mito-COX-2 acetylation with the natural phytochemical resveratrol resulted in reducing cell proliferation and mitochondrial fission, occurring through upregulation of mitochondrial deacetylase sirtuin 3 (SIRT3), which, in turn, increased the chemosensitivity of HCC to platinum drugs in vitro and in vivo. Our results suggest that targeting interventions to PINK1-mediated mito-COX-2/p-Drp1Ser616-dependent mitochondrial dynamics increases the chemosensitivity of HCC and might help us to understand how to use the SIRT3-modulated mito-COX-2/p-Drp1Ser616 signaling axis to develop an effective clinical intervention in hepatocarcinogenesis.

4.
Biomed Environ Sci ; 29(2): 127-36, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-27003170

RESUMO

OBJECTIVE: Cr(VI) removal from industrial effluents and sediments has attracted the attention of environmental researchers. In the present study, we aimed to isolate bacteria for Cr(VI) bioremediation from sediment samples and to optimize parameters of biodegradation. METHODS: Strains with the ability to tolerate Cr(VI) were obtained by serial dilution and spread plate methods and characterized by morphology, 16S rDNA identification, and phylogenetic analysis. Cr(VI) was determined using the 1,5-diphenylcarbazide method, and the optimum pH and temperature for degradation were studied using a multiple-factor mixed experimental design. Statistical analysis methods were used to analyze the results. RESULTS: Fifty-five strains were obtained, and one strain (Sporosarcina saromensis M52; patent application number: 201410819443.3) having the ability to tolerate 500 mg Cr(VI)/L was selected to optimize the degradation conditions. M52 was found be able to efficiently remove 50-200 mg Cr(VI)/L in 24 h, achieving the highest removal efficiency at pH 7.0-8.5 and 35 °C. Moreover, M52 could completely degrade 100 mg Cr(VI)/L at pH 8.0 and 35 °C in 24 h. The mechanism involved in the reduction of Cr(VI) was considered to be bioreduction rather than absorption. CONCLUSION: The strong degradation ability of S. saromensis M52 and its advantageous functional characteristics support the potential use of this organism for bioremediation of heavy metal pollution.


Assuntos
Cromo/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Sporosarcina/isolamento & purificação , Biodegradação Ambiental , China , Sporosarcina/genética , Sporosarcina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA