Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402374, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655601

RESUMO

The construction of secondary building units (SBUs) in versatile metal-organic frameworks (MOFs) represents a promising method for developing multi-functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high-nuclear transition-metal-based UiO-architecture Co16-MOF-BDC with visible-light-absorbing capacity. Remarkably, the N3 - molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible-light-absorbing chromophores via click reaction. The resulting Bodipy@Co16-MOF-BDC exhibits extremely high performance for oxidative coupling benzylamine (~100 % yield) via both energy and electron transfer processes, which is much superior to that of Co16-MOF-BDC (31.5 %) and Carboxyl @Co16-MOF-BDC (37.5 %). Systematic investigations reveal that the advantages of Bodipy@Co16-MOF-BDC in dual light-absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron-hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high-nuclear transition-metal-based SBUs with surface-modifiable small molecules.

2.
Inorg Chem ; 61(33): 13058-13066, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35838661

RESUMO

It is a great challenging task for selectivity control of both CO2 photoreduction and water splitting to produce syngas via precise microenvironment regulation. Herein, a series of UiO-type Eu-MOFs (Eu-bpdc, Eu-bpydc, Rux-Eu-bpdc, and Rux-Eu-bpydc) with different surrounding confined spaces were designed and synthesized. These photosensitizing Rux-Eu-MOFs were used as the molecular platform to encapsulate the [CoII4(dpy{OH}O)4(OAc)2(H2O)2]2+ (Co4) cubane cluster for constructing Co4@Rux-Eu-MOF (x = 0.1, 0.2, and 0.4) heterogeneous photocatalysts for efficient CO2 photoreduction and water splitting. The H2 and CO yields can reach 446.6 and 459.8 µmol·g-1, respectively, in 10 h with Co4@Ru0.1-Eu-bpdc as the catalyst, and their total yield can be dramatically improved to 2500 µmol·g-1 with the ratio of CO/H2 ranging from 1:1 to 1:2 via changing the photosensitizer content in the confined space. By increasing the N content around the cubane, the photocatalytic performance drops sharply in Co4@Ru0.1-Eu-bpydc, but with an enhanced proportion of CO in the final products. In the homogeneous system, the Co4 cubane was surrounding with Ru photosensitizers via week interactions, which can drive water splitting into H2 with >99% selectivity. Comprehensive structure-function analysis highlights the important role of microenvironment regulation in the selectivity control via constructing homogeneous and heterogeneous photocatalytic systems. This work provides a new insight for engineering a catalytic microenvironment of the cubane cluster for selectivity control of CO2 photoreduction and water splitting.


Assuntos
Dióxido de Carbono , Fotossíntese , Catálise , Fármacos Fotossensibilizantes , Água
3.
J Am Chem Soc ; 143(49): 20792-20801, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865490

RESUMO

Solar-driven carbonylation with CO2 replacing toxic CO as a C1 source is of considerable interest; however it remains a great challenge due to the inert CO2 molecule. Herein, we integrate cobalt single-site and ultrafine CuPd nanocluster catalysts into a porphyrin-based metal-organic framework to construct composite photocatalysts (Cu1Pd2)z@PCN-222(Co) (z = 1.3, 2.0, and 3.0 nm). Upon visible light irradiation, excited porphyrin can concurrently transfer electrons to Co single sites and CuPd nanoclusters, providing the possibility for coupling CO2 photoreduction and Suzuki/Sonogashira reactions. This multicomponent synergy in (Cu1Pd2)1.3@PCN-222(Co) can not only replace dangerous CO gas but also dramatically promote the photosynthesis of benzophenone in CO2 with over 90% yield and 97% selectivity under mild condition. Systematic investigations clearly decipher the function and collaboration among different components in these composite catalysts, highlighting a new insight into developing a sustainable protocol for carbonylation reactions by employing greenhouse gas CO2 as a C1 source.

4.
Angew Chem Int Ed Engl ; 60(40): 22062-22069, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34342372

RESUMO

Photosensitization associated with light absorption and energy/electron-transfer represents the central processes for photosynthesis. However, it's still a challenge to develop a heavy-atom-free (HAF) strategy to improve the sensitizing ability of polymeric photosensitizers. Herein, we propose a new protocol to significantly improve the photosensitization by decorating mother conjugated microporous polymer (CMP-1) with polycyclic aromatic hydrocarbons (PAHs), resulting in a series of CMPs (CMP-2-4). Systematic study reveals that covalent modification with PAHs can transfer charge to Bodipy in CMP to further facilitate both intersystem crossing and electron-hole separation, which can dramatically boost energy-/electron-transfer reactions. Remarkably, CMP-2 as a representative CMP can efficiently drive the photosynthesis of methyl phenyl sulfoxide with 92 % yield, substantially higher than that of CMP-1 (32 %). Experiments and theory calculations demonstrate the structure-property-activity relationship of these CMPs, opening a new horizon for developing HAF heterogeneous photosensitizers with highly efficient sensitizing activity by rational structure regulation at a molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA