Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(10): 4476-4486, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382547

RESUMO

Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.


Assuntos
Antibacterianos , Formigas , Genes Bacterianos , Humanos , Adulto , Idoso , Antibacterianos/farmacologia , Ecossistema , Lipídeos
2.
J Hazard Mater ; 436: 129261, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739780

RESUMO

The massive food wastes pose a growing health concern for spreading of antibiotic resistance and pathogens due to food spoilage. However, little is known about these microbial hazards during collection, classification, and transportation before eventual treatment. Here, we profiled the temporal variations of antibiotic resistance genes (ARGs), pathogens, bacterial and fungal communities across four typical food wastes (vegetable, fish, meat, and rice) during storage at room temperature in summer (maximum 28-29 °C) of typical southeast city in China. A total of 171 ARGs and 32 mobile genetic elements were detected, and the absolute abundance of ARGs significantly increased by up to 126-fold with the storage time. Additionally, five bacterial pathogens containing virulence factor genes were detected, and Klebsiella pneumoniae was persistently detected throughout the storage time in all food types except rice. Moreover, fungal pathogens (e.g., Aspergillus, Penicillium, and Fusarium) were also frequently detected. Notably, animal food wastes were demonstrated to harbor higher abundance of ARGs and more types of pathogens, indicating a higher level of hazard. Mobile genetic elements and food types were demonstrated to mainly impact ARG profiles and pathogens, respectively. This work provides a comprehensive understanding of the microbial hazards associated with food waste recycling, and will contribute to optimize the food waste management to ensure biosecurity and benefit human health.


Assuntos
Antibacterianos , Eliminação de Resíduos , Ração Animal , Animais , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA