Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
BMC Public Health ; 24(1): 1958, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039457

RESUMO

BACKGROUND: Previous research has revealed a negative association between social support and procrastination. However, few studies have investigated the mechanism underlying this relationship among vocational college students. OBJECTIVE: Based on the social cognitive theory, this study was intended to investigate the multiple mediating effects of self-efficacy and resilience on the relationship between social support and procrastination among vocational college students. METHODS: This study employed a cross-sectional design involving a sample of 1,379 students from a vocational college in China. Data were collected using the General Procrastination Scale, the Multidimensional Scale of Perceived Social Support, the General Self-Efficacy Scale, and the Resilience Scale-14. The PROCESS macro for SPSS was used to examine the multiple mediation model. RESULTS: Our findings indicate significant negative correlations between social support, self-efficacy, resilience, and procrastination. The multiple mediation analysis showed that social support did not have a significant direct impact on procrastination. Instead, the relationship between social support and procrastination was fully mediated by self-efficacy (indirect effect: -0.017; 95% CI: -0.032, -0.004) and resilience (indirect effect: -0.047; 95% CI: -0.072, -0.025), and sequentially mediated by both factors (indirect effect: -0.013; 95% CI: -0.020, -0.007). CONCLUSIONS: The results emphasise the importance of enhancing self-efficacy and resilience in initiatives aimed at preventing and intervening in case of procrastination among vocational college students. Additionally, strengthening social support may also be crucial to preventing or reducing procrastination among this population.


Assuntos
Procrastinação , Resiliência Psicológica , Autoeficácia , Apoio Social , Estudantes , Humanos , Estudos Transversais , Masculino , Feminino , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Adulto Jovem , Universidades , China , Adolescente , Adulto , Inquéritos e Questionários
2.
J Environ Manage ; 366: 121860, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025008

RESUMO

The biodegradation of guar gum by microorganisms sourced from coalbeds can result in low-temperature gel breaking, thereby reducing reservoir damage. However, limited attention has been given to the influence of salinity on the synergistic biodegradation of coal and guar gum. In this study, biodegradation experiments of guar gum and lignite were conducted under varying salinity conditions. The primary objective was to investigate the controlling effects and mechanisms of salinity on the synergistic biodegradation of lignite and guar gum. The findings revealed that salinity had an inhibitory effect on the biomethane production from the co-degradation of lignite and guar gum. The biomethane production declined with increasing salinity levels, decreasing from 120.9 mL to 47.3 mL. Even under 20 g/L salt stress conditions, bacteria in coalbeds could effectively break the gel and the viscosity decreased to levels below 5 mPa s. As salinity increased, the removal rate of soluble chemical oxygen demand (SCOD) decreased from 55.63% to 31.17%, and volatile fatty acids (VFAs) accumulated in the digestion system. High salt environment reduces the intensity of each fluorescence peak. Alterations in salinity led to changes in microbial community structure and diversity. Under salt stress, there was an increased relative abundance of Proteiniphilum and Methanobacterium, ensuring the continuity of anaerobic digestion. Hydrogentrophic methanogens exhibited higher salt tolerance compared to acetoclastic methanogens. These findings provide experimental evidence supporting the use of guar gum fracturing fluid in coalbeds with varying salinity levels.

3.
Sci Total Environ ; 946: 174085, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38908596

RESUMO

Coalbed methane (CBM) presents a promising energy source for addressing global energy shortages. Nonetheless, challenges such as low gas production from individual wells and difficulties in breaking gels at low temperatures during extraction hinder its efficient utilization. Addressing this, we explored native microorganisms within coal seams to degrade guar gum, thereby enhancing CBM production. However, the underlying mechanisms of biogenic methane production by synergistic biodegradation of lignite and guar gum remain unclear. Research results showed that the combined effect of lignite and guar gum enhanced the production, yield rate and concentration of biomethane. When the added guar gum content was 0.8 % (w/w), methane production of lignite and guar gum reached its maximum at 561.9 mL, which was 11.8 times that of single lignite (47.3 mL). Additionally, guar gum addition provided aromatic and tryptophan proteins and promoted the effective utilization of CC/CH and OCO groups on the coal surface. Moreover, the cooperation of lignite and guar gum accelerated the transformation of volatile fatty acids into methane and mitigated volatile fatty acid inhibition. Dominant bacteria such as Sphaerochaeta, Macellibacteroides and Petrimonas improved the efficiency of hydrolysis and acidification. Electroactive microorganisms such as Sphaerochaeta and Methanobacterium have been selectively enriched, enabling the establishment of direct interspecies electron transfer pathways. This study offers valuable insights for increasing the production of biogenic CBM and advancing the engineering application of microbial degradation of guar gum fracturing fluid. Future research will focus on exploring the methanogenic capabilities of lignite and guar gum in in-situ environments, as well as elucidating the specific metabolic pathways involved in their co-degradation.


Assuntos
Biodegradação Ambiental , Carvão Mineral , Galactanos , Mananas , Metano , Gomas Vegetais , Gomas Vegetais/metabolismo , Mananas/metabolismo , Galactanos/metabolismo , Metano/metabolismo
5.
Talanta ; 276: 126269, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776773

RESUMO

Quizalofop-p-ethyl is a widely used herbicide that also poses a risk to human health and environmental safety. However, there is still a lack of simple and in-situ detecting method for quizalofop-p-ethyl so far. In this work, the fluorescent sensor was firstly developed on detection of quizalofop-p-ethyl based on cyanostilbene-pyridine macrocycle (CPM). CPM was prepared by the "1 + 1" condensation of pyridine-substituted cyanostilbene derivative with 4,4'-Bis(chloromethyl)biphenyl in 68 % yield. The weak fluorescence of CPM in aqueous media transferred to strong orange fluorescence after sensing quizalofop-p-ethyl. This sensing behavior exhibited high selectivity among 28 kinds of herbicides and ions. The limitation of detection (LOD) was 2.98 × 10-8 M and the limitation of quantification (LOQ) was 9.94 × 10-8 M (λex = 390 nm, λem = the maximum emission between 512 nm and 535 nm) with a dynamic range of 0.01-0.9 eq. The binding constant (Ka) of quizalofop-p-ethyl to the sensor CPM was 3.2 × 106 M-1. The 1:1 sensing mechanism was confirmed as that quizalofop-p-ethyl was located in the cavity of CPM, which enhanced aggregating effect and reduced the intramolecular rotation of aromatic groups for better AIE effect. The sensing ability of CPM for quizalofop-p-ethyl had been efficiently applied in test paper experiments, agricultural product tests and real water samples, revealing that CPM has good application prospect for simple and in-situ detection of quizalofop-p-ethyl in real environment.

6.
Bioprocess Biosyst Eng ; 47(4): 483-493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478120

RESUMO

To improve the methanogenic efficiency of lignite anaerobic fermentation and explore innovative approaches to sludge utilization, a co-fermentation technique involving lignite and sludge was employed for converting biomass into biomethane. Volatile suspended solids were introduced as a native enrichment of the sludge and mixed with lignite for fermentation. The synergistic fermentation mechanism between sludge and lignite for biomethane production was analyzed through biochemical methane potential experiments, measurement of various parameters pre- and post-fermentation, observation of bacterial population changes during the peak of reaction, carbon migration assessment, and evaluation of rheological characteristics. The results showed that the addition of sludge in the anaerobic fermentation process improved the microorganisms' ability to degrade lignite and bolstered biomethane production. Notably, the maximum methane production recorded was 215.52 mL/g-volatile suspended solids, achieved at a sludge to coal ratio of 3:1, with a synergistic growth rate of 25.37%. Furthermore, the removal rates of total suspended solids, and total chemical oxygen demand exhibited an upward trend with an increasing percentage of sludge in the mixture. The relative abundance and activity of the methanogens population were found to increase with an appropriate ratio of sludge to lignite. This observation confirmed the migration of carbon between the solid-liquid-gas phases, promoting enhanced system affinity. Additionally, the changes in solid-liquid phase parameters before and after the reaction indicated that the addition of sludge improved the system's degradation capacity. The results of the study hold significant implications in realizing the resource utilization of sludge and lignite while contributing to environmental protection endeavors.


Assuntos
Carvão Mineral , Esgotos , Fermentação , Esgotos/microbiologia , Metano/metabolismo , Carbono , Anaerobiose , Reatores Biológicos
7.
Ecotoxicol Environ Saf ; 273: 116151, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412633

RESUMO

This research aimed to develop a new method for clean utilization and treatment of landfill leachate and solid waste weathered coal. Landfill leachate and weathered coal were adopted for combined anaerobic fermentation for methane production. The characteristics of microbial community, mechanism of biological methane production, and utilization characteristics of fermentation broth and solid residue for co-fermentation were analyzed through metagenomics, soluble organic matter detection and thermogravimetric (TG) analysis. The obtained results revealed that combined anaerobic fermentation increased methane production by 80.1%. Syntrophomonas, Salipiger, Methanosaeta and Methanothrix were highly correlated. Gene abundances of 2-oxoacid ferredoxin oxidoreductase and enolase were increased in methane conversion pathway mainly by acetic acid. Pyruvate-ferroredoxin oxidoreductase, 2-oxoglutarate synthase and succinate dehydrogenase acetate synthase intensified electron transfer pathways among microorganisms. Fulvic acid, tyrosine and tryptophan contents were high in fermentation broth. Volatile decomposition temperature, ignition point and residual char combustion temperature of residual coal were decreased and combustion was more stable. The obtained results showed that the co-fermentation of landfill leachate and weathered coal improved biological methane gas production, degraded weathered coal and improved combustion performance, which provided a new idea for weathered coal clean utilization.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fermentação , Anaerobiose , Metano/metabolismo , Oxirredutases/metabolismo , Reatores Biológicos
8.
Nano Lett ; 24(5): 1602-1610, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286023

RESUMO

Metallene materials with atomic thicknesses are receiving increasing attention in electrocatalysis due to ultrahigh surface areas and distinctive surface strain. However, the continuous strain regulation of metallene remains a grand challenge. Herein, taking advantage of autocatalytic reduction of Cu2+ on biaxially strained, carbon-intercalated Ir metallene, we achieve control over the carbon extraction kinetics, enabling fine regulation of carbon intercalation concentration and continuous tuning of (111) in-plane (-2.0%-2.6%) and interplanar (3.5%-8.8%) strains over unprecedentedly wide ranges. Electrocatalysis measurements reveal the strain-dependent activity toward hydrogen evolution reaction (HER), where weakly strained Ir metallene (w-Ir metallene) with the smallest lattice constant presents the highest mass activity of 2.89 A mg-1Ir at -0.02 V vs reversible hydrogen electrode (RHE). Theoretical calculations validated the pivotal role of lattice compression in optimizing H binding on carbon-intercalated Ir metallene surfaces by downshifting the d-band center, further highlighting the significance of strain engineering for boosted electrocatalysis.

9.
J Org Chem ; 89(3): 2032-2038, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38226644

RESUMO

The construction of a C-C bond by cross-coupling of two different C-H bonds with the release of hydrogen gas represents an ideal yet challenging bond formation strategy. Herein, we report a photocatalytic metal-free cross-coupling of benzylic and aldehydic C-H bonds by synergistic catalysis of organophotocatalyst 4CzIPN and a thiol, which affords the corresponding α-aryl ketones in acceptable yields along with hydrogen evolution. The mechanistic investigation indicates a radical-radical coupling to give an intermediary alcohol, followed by an acceptorless alcohol dehydrogenation.

10.
Ecology ; 105(3): e4241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272569

RESUMO

Quantifying ecosystem resilience to disturbance is important for understanding the effects of disturbances on ecosystems, especially in an era of rapid global change. However, there are few studies that have used standardized experimental disturbances to compare resilience patterns across abiotic gradients in real-world ecosystems. Theoretical studies have suggested that increased return times are associated with increasing variance during recovery from disturbance. However, this notion has rarely been explicitly tested in field, in part due to the challenges involved in obtaining long-term experimental data. In this study, we examined resilience to disturbance of 12 coastal marsh sites (five low-salinity and seven polyhaline [=salt] marshes) along a salinity gradient in Georgia, USA. We found that recovery times after experimental disturbance ranged from 7 to >127 months, and differed among response variables (vegetation height, cover and composition). Recovery rates decreased along the stress gradient of increasing salinity, presumably due to stress reducing plant vigor, but only when low-salinity and polyhaline sites were analyzed separately, indicating a strong role for traits of dominant plant species. The coefficient of variation of vegetation cover and height in control plots did not vary with salinity. In disturbed plots, however, the coefficient of variation (CV) was consistently elevated during the recovery period and increased with salinity. Moreover, higher CV values during recovery were correlated with slower recovery rates. Our results deepen our understanding of resilience to disturbance in natural ecosystems, and point to novel ways that variance can be used either to infer recent disturbance, or, if measured in areas with a known disturbance history, to predict recovery patterns.


Assuntos
Resiliência Psicológica , Áreas Alagadas , Ecossistema , Plantas , Salinidade
11.
Small ; 20(5): e2306170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759416

RESUMO

Room-temperature phase change materials (RTPCMs) exhibit promise to address challenges in thermal energy storage and release, greatly aiding in numerous domains of human existence and productivity. The conventional RTPCMs undergo inevitable volume expansion, structural collapse, and diffusion of active ingredients while maintaining desirable phase change enthalpy and ideal phase change temperature. Here, a sol-gel 1D-induced growth approach is presented to fabricate meta nanofibers (Meta-NFs) comprised of vanadium dioxide with monoclinic crystal structure, and further achieve the editable phase change temperature from 68 to 37 °C through W-doping, which allowed for tailored length variation of the zigzag V-V bond. Subsequently, Meta-NFs are assembled into 3D aerogels with self-standing architecture, thereby enabling the independent use of the RTPCMs. The obtained metamaterials demonstrate not only the temperature-editing solid-solid phase transition, but also the stiffness of the ceramic matrix, exhibiting the thermal energy control capability at room temperature (37 °C), thermal insulation properties, temperature resistance, and flame retardancy. The effective creation of these fascinating metamaterials might offer new insights for next-generation and self-standing solid-solid RTPCMs.

12.
Angew Chem Int Ed Engl ; 63(7): e202317987, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38152839

RESUMO

Platinum metal (PtM, M=Ni, Fe, Co) alloys catalysts show high oxygen reduction reaction (ORR) activity due to their well-known strain and ligand effects. However, these PtM alloys usually suffer from a deficient ORR durability in acidic environment as the alloyed metal is prone to be dissolved due to its high electronegativity. Herein, we report a new class of PtMn alloy nanodendrite catalyst with low-electronegativity Mn-contraction for boosting the oxygen reduction durability of fuel cells. The moderate strain in PtMn, induced by Mn contraction, yields optimal oxygen reduction activity at 0.53 A mg-1 at 0.9 V versus reversible hydrogen electrode (RHE). Most importantly, we show that relative to well-known high-electronegativity Ni-based Pt alloy counterpart, the PtMn nanodendrite catalyst experiences less transition metals' dissolution in acidic solution and achieves an outstanding mass activity retention of 96 % after 10,000 degradation cycles. Density functional theory calculation reveals that PtMn alloys are thermodynamically more stable than PtNi alloys in terms of formation enthalpy and cohesive energy. The PtMn nanodendrite-based membrane electrode assembly delivers an outstanding peak power density of 1.36 W cm-2 at a low Pt loading and high-performance retention over 50 h operations at 0.6 V in H2 -O2 hydrogen fuel cells.

13.
Anim Biotechnol ; 35(1): 2276717, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37934003

RESUMO

The objective of this study was to assess the genetic diversity, phylogenetic relationship and population structure of five goat breeds in Shanxi, China. High genetic diversities were found in the five populations, among which, Licheng big green goat (LCBG) has the highest genetic diversity, while Jinlan cashmere goat (JLCG) population has the lowest genetic diversity. Bottleneck analysis showed the absence of recent genetic bottlenecks in the five goat populations. Genetic differentiation analysis shows that the closest genetic relationship between LCBG and LLBG (Lvliang black goat) was found, and the genetic distance between JLCG and the other four populations is the largest. The population structure of JLCG is different from the other four populations with K = 2, while LCBG and LLBG have high similarity population structure as the K value changes. Knowledge about genetic diversity and population structure of indigenous goats is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of goat breeds.


Assuntos
Variação Genética , Genética Populacional , Animais , Variação Genética/genética , Filogenia , Cabras/genética , Repetições de Microssatélites/genética
14.
Environ Sci Technol ; 57(44): 17011-17021, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874964

RESUMO

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms. We find that when heated to 40-45 °C in an airborne thermal denuder, 19% of lofted smoke PM1 evaporates. Thermal denuder measurements are consistent with evaporation observed when a single smoke plume was sampled across a range of temperatures as the plume descended from 4 to 2 km altitude. We also demonstrate that chemical aging of smoke and differences in PM emission factors can not fully explain the platform-dependent differences. When the measured PM volatility is applied to output from the High Resolution Rapid Refresh Smoke regional model, we predict a lower PM NEMR at the surface compared to the lofted smoke measured by aircraft. These results emphasize the significant role that gas-particle partitioning plays in determining the air quality impacts of wildfire smoke.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Fumaça/análise , Poluentes Atmosféricos/análise , Biomassa , Poluição do Ar/análise , Material Particulado/análise , Aerossóis/análise , Monitoramento Ambiental/métodos
15.
Front Public Health ; 11: 1260612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860794

RESUMO

Objective: To investigate the association between the concentration of perchlorate in drinking water and the height and weight of children and adolescents in Sichuan Province. Methods: Perchlorate in the drinking water of 24 counties in Sichuan Province from 2021 to 2022 was detected and analyzed, 66 drinking water samples were collected, and the content of perchlorate in drinking water during the wet season and dry season was detected by ultra-high performance liquid chromatography in series. The linear mixed effect model was used to estimate the relationship between perchlorate in drinking water and the height and weight of 144,644 children and adolescents, and 33 pieces of local average wage data were used as confounding factors for quality control. Results: After controlling the age, gender, and local economic situation, we found that the concentration of perchlorate in drinking water increased by 10 µg/L is associated with a 1.0 cm decrease in height and a 1.6 kg decrease in weight in children and adolescents (p < 0.05). Conclusion: The concentration of perchlorate in drinking water may be negatively correlated with the height and weight of children.


Assuntos
Água Potável , Poluentes Químicos da Água , Criança , Humanos , Adolescente , Estudos Transversais , Percloratos , Estudos Retrospectivos , Poluentes Químicos da Água/análise , China
16.
Nat Commun ; 14(1): 6893, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898629

RESUMO

Ligand effect, induced by charge transfer between catalytic surface and substrate in core/shell structure, was widely proved to benefit Pt-catalyzed oxygen reduction reaction by tuning the position of d-band center of Pt theoretically. However, ligand effect is always convoluted by strain effect in real core/shell nanostructure; therefore, it remains experimentally unknown whether and how much the ligand effect solely contributes electrocatalytic activity improvements. Herein, we report precise synthesis of a kind of Pd3Ru1/Pt core/shell nanoplates with exclusive ligand effect for oxygen reduction reaction. Layer-by-layer growth of Pt overlayers onto Pd3Ru1 nanoplates can guarantee no lattice mismatch between core and shell because the well-designed Pd3Ru1 has the same lattice parameters as Pt. Electron transfer, due to the exclusive ligand effect, from Pd3Ru1 to Pt leads to a downshift of d-band center of Pt. The optimal Pd3Ru1/Pt1-2L nanoplates achieve excellent activity and stability for oxygen reduction reaction in alkaline/acid electrolyte.

17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 903-911, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37879919

RESUMO

Magnetic resonance imaging(MRI) can obtain multi-modal images with different contrast, which provides rich information for clinical diagnosis. However, some contrast images are not scanned or the quality of the acquired images cannot meet the diagnostic requirements due to the difficulty of patient's cooperation or the limitation of scanning conditions. Image synthesis techniques have become a method to compensate for such image deficiencies. In recent years, deep learning has been widely used in the field of MRI synthesis. In this paper, a synthesis network based on multi-modal fusion is proposed, which firstly uses a feature encoder to encode the features of multiple unimodal images separately, and then fuses the features of different modal images through a feature fusion module, and finally generates the target modal image. The similarity measure between the target image and the predicted image in the network is improved by introducing a dynamic weighted combined loss function based on the spatial domain and K-space domain. After experimental validation and quantitative comparison, the multi-modal fusion deep learning network proposed in this paper can effectively synthesize high-quality MRI fluid-attenuated inversion recovery (FLAIR) images. In summary, the method proposed in this paper can reduce MRI scanning time of the patient, as well as solve the clinical problem of missing FLAIR images or image quality that is difficult to meet diagnostic requirements.


Assuntos
Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
18.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 14807-14820, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698970

RESUMO

We consider the problem of learning a neural network classifier. Under the information bottleneck (IB) principle, we associate with this classification problem a representation learning problem, which we call "IB learning". We show that IB learning is, in fact, equivalent to a special class of the quantization problem. The classical results in rate-distortion theory then suggest that IB learning can benefit from a "vector quantization" approach, namely, simultaneously learning the representations of multiple input objects. Such an approach assisted with some variational techniques, result in a novel learning framework, "Aggregated Learning", for classification with neural network models. In this framework, several objects are jointly classified by a single neural network. The effectiveness of this framework is verified through extensive experiments on standard image recognition and text classification tasks.

19.
Org Lett ; 25(29): 5486-5491, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37470382

RESUMO

Controllable oxidation of alcohols to carbonyls is one of the fundamental transformations in organic chemistry. Herein, we report an unprecedented visible-light-mediated metal-free oxidation of alcohols to carbonyls with hydrogen evolution. By synergistic combination of organophotocatalyst 4CzIPN and a thiol hydrogen atom transfer catalyst, a broad range of alcohols, including primary and secondary benzylic alcohols as well as aliphatic alcohols, were readily oxidized to carbonyls in moderate to excellent yields. A site-selective oxidation has also been achieved by this protocol. Mechanistic investigation indicates that the oxidation proceeds through an oxidative radical-polar crossover process to obtain an α-oxy carbon cation.

20.
Nano Lett ; 23(13): 6233-6240, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37389856

RESUMO

Phase change materials (PCMs) are appealing for their fascinating capability of thermal reallocation, assisting widely in many areas of human productivity and life. However, it has remained a significant challenge to attain shape stability, temperature resistance, and microscale continuity in PCMs while maintaining sufficient phase change performance. Here we report a sol epitaxial fabrication strategy to create metal-insulator transition nanofibers (MIT-NFs) composed of monoclinic vanadium dioxide. The MIT-NFs are further assembled into self-standing two-dimensional membranes and three-dimensional aerogels with structural robustness. The resulting series of metal-insulator transition materials exhibits the integrated features of solid-solid phase change properties, shape stability, and thermal reallocation properties. The integral ceramic characteristic also provides the MIT-NFs with surface stiffness (54 GPa), temperature resistance (-196° to 330 °C), and thermal insulator properties. The successful fabrication of these captivating MIT materials may provide new perspectives for next-generation, shape-stable, and self-standing PCMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA