Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Total Environ ; 918: 170628, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325476

RESUMO

The one-time application of common urea blended with controlled-release urea (CRU) is considered effective for improving nitrogen use efficiency and grain yield and reducing the greenhouse gas emissions of summer maize in intensive agricultural systems. However, the trade-off between the economic and environmental performances of different blended fertilizer treatments for different maize varieties remains unclear. Therefore, a consecutive two-year field experiment was conducted in the North China Plain to study the effects of different ratios of CRU and common urea on the yield, nitrous oxide (N2O) emissions, yield-scaled total N2O emissions, greenhouse gas intensity (GHGI), and net ecosystem economic benefit (NEEB) in 2021 and 2022. Four N fertilizer treatments with equal rate at 180 kg N ha-1 were applied as N180U (all Urea), N180C1(1/3CRU), N180C2(2/3CRU), and N180C (all CRU), and two maize varieties (JNK728-yellow ripe variety and ZD958-green ripe variety) were used. The N180C1 and N180C2 treatments produced the highest grain yield in varieties JNK728 and ZD958 (9.4-11.5 t ha-1 and 9.0-11.0 t ha-1), respectively. Compared to the N180U treatment (conventional method), the N180C1 treatment reduced the GHGI (24.8 %-25.9 %) and increased the NEEB (33.1 %-33.4 %) in the JNK728 variety, whereas the N180C2 treatment reduced the GHGI (16.9 %-28.8 %) and increased the NEEB (27.2 %-48.1 %) in the ZD958 variety. The study concludes that a one-time application of blended nitrogen fertilizer in suitable varieties can minimize the GHGI and maximize the NEEB, which is an effective strategy for balancing yield and nitrogen efficiency in the summer maize system in the North China Plain.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Solo , Zea mays , Preparações de Ação Retardada , Ureia , Fertilizantes/análise , Ecossistema , Metano/análise , Agricultura/métodos , Nitrogênio , Grão Comestível/química , Óxido Nitroso/análise , China
2.
Bioresour Technol ; 394: 130285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184087

RESUMO

The aim of this study was to reveal the mechanism by which co-inoculation with both Trichoderma viridis and Bacillus subtilis improved the efficiency of composting and degradation of lignocellulose in agricultural waste. The results showed that co-inoculation with Trichoderma and Bacillus increased abundance of Bacteroidota to promote the maturation 7 days in advance. Galbibacter may be a potential marker of co-inoculation composting efficiency compost. The compost became dark brown, odorless, and had a carbon to nitrogen ratio of 16.40 and a pH of 8.2. Moreover, Actinobacteriota and Firmicutes still dominated the degradation of lignocellulose following inoculation with Trichoderma or Bacillus 35 days after composting. Bacterial function prediction analysis showed that carbohydrate metabolism was the primary metabolic pathway. In conclusion, co-inoculation with Trichoderma and Bacillus shortened the composting cycle and accelerated the degradation of lignocellulose. These findings provide new strategies for the efficient use of agricultural waste to produce organic fertilizers.


Assuntos
Bacillus , Compostagem , Lignina , Trichoderma , Bacillus subtilis , Solo , Esterco
3.
Chemosphere ; 327: 138505, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965535

RESUMO

The complete pathway of chromium (Cr) transfer from soil to plant tissues and subcellular components under biochar amendment remains to be quantified, as well as the involved diverse detoxification processes in roots and stems respectively. Pot experiments and quantitative analysis were conducted to investigate Cr fixation in soil amended with Enteromorpha prolifera-derived biochar and subsequent phytoprocesses (Cr uptake, transfer, and phytotoxicity) in cultivated Secale cereale L. (rye). The results indicated that adding 5-30 g kg-1 of biochar increased the residual form of Cr (B4) in soil by 8-21% and decreased the bioavailable form of Cr (B1) by 9-29%. For Cr transferred to rye, Cr in the rye was mainly present in the low-toxicity bound state, with the acetic acid-extracted Cr (F4) (45-54%) in roots and the NaCl-extracted Cr (F3) (37-47%) in stems. The subcellular distribution of Cr in both roots and stems was predominantly in the cell wall and residues (T1), followed by the cytoplasm (T4). Partial least squares path model (PLS-PM) was used for quantifying the effect of biochar on the form changes and subcellular detoxification of Cr from soil to roots and stems to sub-cells. In soils, biochar reduced the bioavailability of Cr and decreased the transfer of Cr to rye. In plant roots, Cr was distributed mainly as low-toxicity phosphate complexes in cell walls and vacuoles in sub-cells (with the largest path coefficients of 0.90 and -0.91, respectively). In the stems, Cr was distributed mainly as proteins integrated into the cell walls and vacuoles. This was due to the difference in subcellular compartmentalization of detoxification in the roots and stems. These PLS-PM results provide new insights into the entire process of pollutant detoxification in complex environments.


Assuntos
Cromo , Poluentes do Solo , Cromo/química , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química , Plantas/metabolismo
4.
Ecotoxicol Environ Saf ; 254: 114756, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924595

RESUMO

Salinity stress hampers the growth of most crop plants and reduces yield considerably. In addition to its role in metabolism, γ-aminobutyric acid (GABA) plays a special role in the regulation of salinity stress tolerance in plants, though the underlying physiological mechanism remains poorly understood. In order to study the physiological mechanism of GABA pathway regulated carbon and nitrogen metabolism and tis relationship with salt resistance of maize seedlings, we supplemented seedlings with exogenous GABA under salt stress. In this study, we showed that supplementation with 0.5 mmol·L-1 (0.052 mg·g-1) GABA alleviated salt toxicity in maize seedling leaves, ameliorated salt-induced oxidative stress, and increased antioxidant enzyme activity. Applying exogenous GABA maintained chloroplast structure and relieved chlorophyll degradation, thus improving the photosynthetic performance of the leaves. Due to the improvement in photosynthesis, sugar accumulation also increased. Endogenous GABA content and GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) activity were increased, while glutamate decarboxylase (GAD) activity was decreased, via the exogenous application of GABA under salt stress. Meanwhile, nitrogen metabolism and the tricarboxylic acid (TCA) cycle were activated by the supply of GABA. In general, through the regulation of GABA-shunt metabolism, GABA activated enzymes related to nitrogen metabolism and replenished the key substrates of the TCA cycle, thereby improving the balance of carbon and nitrogen metabolism of maize and improving salt tolerance.


Assuntos
Ciclo do Ácido Cítrico , Plântula , Plântula/metabolismo , Zea mays/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Carbono/metabolismo , Nitrogênio/farmacologia , Nitrogênio/metabolismo , Estresse Fisiológico
5.
Antioxidants (Basel) ; 12(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36830040

RESUMO

Maize (Zea mays L.) is one of the most important food crops in the world. Drought is currently the most important abiotic factor affecting maize yield. L-arginine has emerged as a nontoxic plant growth regulator that enhances the tolerance of plants to drought. An experiment was conducted to examine the role of L-arginine in alleviating the inhibitory effects of drought on the photosynthetic capacity and activities of antioxidant enzymes when the plants were subjected to drought stress. The results showed that the biomass of maize seedlings decreased significantly under a 20% polyethylene glycol-simulated water deficit compared with the control treatment. However, the exogenous application of L-arginine alleviated the inhibition of maize growth induced by drought stress. Further analysis of the photosynthetic parameters showed that L-arginine partially restored the chloroplasts' structure under drought stress and increased the contents of chlorophyll, the performance index on an adsorption basis, and Fv/Fm by 151.3%, 105.5%, and 37.1%, respectively. Supplementation with L-arginine also reduced the oxidative damage caused by hydrogen peroxide, malondialdehyde, and superoxide ions by 27.2%, 10.0%, and 31.9%, respectively. Accordingly, the activities of ascorbate peroxidase, catalase, glutathione S-transferase, glutathione reductase, peroxidase, and superoxide dismutase increased by 11.6%, 108.5%, 104.4%, 181.1%, 18.3%, and 46.1%, respectively, under drought. Thus, these findings suggest that L-arginine can improve the drought resistance of maize seedlings by upregulating their rate of photosynthesis and their antioxidant capacity.

6.
J Hazard Mater ; 443(Pt B): 130365, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444077

RESUMO

Mercury (Hg) significantly inhibits maize (Zea mays L.) production, which could be aggravated by water deficit (WD) due to climate change. However, there is no report on the maize in response to combined their stresses. This work was conducted for assessing the response and adaptive mechanism of maize to combined Hg and WD stress using two maize cultivars, Xianyu (XY) 335 and Yudan (YD) 132. The analysis was based on plant growth, physiological function, and transcriptomic data. Compared with the single Hg stress, Hg accumulation in whole plant and translocation factor (TF) under Hg+WD were increased by 64.51 % (1.44 mg kg-1) and 260.00 %, respectively, for XY 335; and 50.32 % (0.62 mg kg-1) and 220.02 %, respectively, for YD 132. Combined Hg and WD stress further increased the reactive oxygen species accumulation, aggravated the damage of the thylakoid membrane, and decreased chlorophyll content compared with single stress. For example, Chl a and Chl b contents of XY 335 were significantly decreased by 48.67 % and 28.08 %, respectively at 48 h after Hg+WD treatment compared with Hg stress. Furthermore, transcriptome analysis revealed that most of down-regulated genes were enriched in photosynthetic-antenna proteins, photosynthesis, chlorophyll and porphyrin metabolism pathways (PsbS1, PSBQ1 and FDX1 etc.) under combined stress, reducing light energy capture and electron transport. However, most genes related to the brassinosteroids (BRs) signaling pathway were up-regulated under Hg+WD stress. Correspondingly, exogenous BRs significantly enhanced the maize tolerance to stress by decreasing Hg accumulation and TF, and raising activities of antioxidant enzyme, the content of chlorophyll and photosynthetic performance. The PI, Fv/Fm and Fv/Fo of Hg+WD+BR treatment were increased by 29.88 %, 32.06 %, and 14.56 %, respectively, for XY 335 compared to Hg+WD. Overall, combined Hg and WD stress decreased photosynthetic efficiency by adversely affecting light absorption and electron transport, especially in stress-sensitive variety, but BRs could alleviate the inhibition of photosynthesis, providing a novel strategy for enhancing crop Hg and WD tolerance and food safety.


Assuntos
Mercúrio , Zea mays , Zea mays/genética , Brassinosteroides/farmacologia , Água , Mercúrio/toxicidade , Fotossíntese , Clorofila
7.
Foods ; 11(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36360068

RESUMO

Macroalgae, as one of the important photosynthetic organisms in the marine environment are widely used in various fields, particularly in the production of food and pharmaceuticals. Given their wide distribution, easy accessibility and high efficiency in fixing carbon dioxide through the carbon concentrating mechanism, they can produce abundant nutriments or metabolites. Moreover, macroalgae can assimilate nitrogen and phosphorus bases on the purification of wastewater, and thus further accumulate high levels of bioactive substances. This review mainly introduces the distribution characteristics of macroalgae and their unique bioactive applications in food, medicine and environmental remediation. Their functional ingredients and bioactive substances are beneficial in food production and/or medicine development. Resource utilization of macroalgae coupled with wastewater and waste gas treatment would provide a sustainable path for bioactive substances production.

8.
Ecotoxicol Environ Saf ; 246: 114191, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265405

RESUMO

Maize pollen is highly sensitive to heat and drought, but few studies have investigated the combined effects of heat and drought on pollen viability. In this study, pollen's structural and physiological characteristics were determined after heat, drought, and combined stressors. Furthermore, integrated metabolomic and transcriptomic analyses of maize pollen were conducted to identify potential mechanisms of stress responses. Tassel growth and spikelet development were considerably suppressed, pollen viability was negatively impacted, and pollen starch granules were depleted during anthesis under stress. The inhibitory effects were more significant due to combined stresses than to heat or drought individually. The metabolic analysis identified 71 important metabolites in the combined stress compared to the other treatments, including sugars and their derivatives related to pollen viability. Transcriptomics also revealed that carbohydrate metabolism was significantly altered under stress. Moreover, a comprehensive metabolome-transcriptome analysis identified a central mechanism in the biosynthesis of UDP-glucose involved in reducing the activity of sucrose synthase SH-1 (shrunken 1) and sus1 (sucrose synthase 1) that suppressed sucrose transfer to UDP-glucose, leading to pollen viability exhaustion under stress. In conclusion, the lower pollen viability after heat and drought stress was associated with poor sucrose synthase activity due to the stress treatments.


Assuntos
Secas , Zea mays , Zea mays/metabolismo , Temperatura Alta , Transcriptoma , Estresse Fisiológico , Pólen/genética , Perfilação da Expressão Gênica , Glucose/metabolismo , Difosfato de Uridina/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Water Res ; 226: 119224, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265423

RESUMO

Fractured rock aquifers are susceptible to contamination, with metal(loid)s rapidly migrating from poorly developed overburden to the fractured rock vadose zone and thus into groundwater. Compared to typical porous aquifers, retention effects within the rock matrix are small, and rapid advection along fractures leads to a higher risk of groundwater contamination. However, the highly complex anisotropic pathways of natural fractures hinder research in this field. To construct reproducible fractures, this study used 3D printing following Computed X-ray Microtomography (µCT) scans of a fractured rock collected in a natural limestone aquifer. Stimulated metalloid release was observed in the fractured rock during column leaching, and the leachate concentrations of arsenic (As) and antimony (Sb) increased by up to 17.5 and 36.4 times, respectively, compared with the porous vadose zone. Fluctuations in fracture metalloid release patterns in dissolved and adsorbed phases were attributed to retention and filtration effects induced by soil particles within fractures. Geophysical properties of the porous overburden, especially the aggregation characteristics, greatly affected the non-equilibrium leaching behavior of As, but had a limited effect on the near-equilibrium leaching of Sb, which was explored by modifying the surficial soil layer with either montmorillonite clay or charcoal. The results of this study provide a novel method and useful information for modeling and risk assessment of fractured rock aquifers.


Assuntos
Água Subterrânea , Metaloides , Carbonato de Cálcio , Solo , Impressão Tridimensional
10.
J Environ Manage ; 316: 115200, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533595

RESUMO

Biochar and plant cooperation in remediation of heavy metal contaminated soil is effective and important, but there still have knowledge gaps of synergistic effect between the two and the synergistic pathway has not been clarified. We prepared the Enteromorpha prolifera biochar at 400 °C and 600 °C (denoted as BC400 and BC600). The Pb fractions changes in soil and Pb toxicity in Brassica juncea were investigated by adding 30 g kg-1 biochar to soil containing 1200 mg kg-1 Pb in a pot experiment. There was a significant synergistic effect between biochar and plants on Pb immobilization in soil, according to the "E > 0" of Pb fractions in the interaction equation. Pb immobilization rates of biochar-plant treatments (BJBC4 and BJBC6) were 12.47% and 11.38% higher than biochar treatment (BC4, BC6), and 17.66% and 16.28% plant treatment (BJ). BJBC4 had a better immobilization effect than BJBC6. Biochar alleviated the phytotoxicity of Pb by increasing the antioxidant enzymes activities of plants. These results indicated two synergistic pathways: (1) The high pH and oxygen-containing functional groups of biochar could immobilize Pb through ion exchange, precipitation, or complexation. (2) Biochar enhanced the activity of the antioxidant enzyme system in plants thus improving the Pb tolerance of plants. Statistical analysis methods such as the partial least squares path modeling (PLS-PM) also confirmed the pathways. In a word, clear synergistic effects and pathways could guide the application of biochar and plants in Pb-contaminated soil.


Assuntos
Poluentes do Solo , Antioxidantes , Carvão Vegetal , Chumbo , Plantas , Solo , Poluentes do Solo/análise
11.
Environ Pollut ; 307: 119488, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597486

RESUMO

Nitric oxide (NO) is an important phytohormone for plant adaptation to mercury (Hg) stress. The effect of Hg on lignin synthesis, NO production in leaf, sheath and root and their relationship were investigated in two members of the grass family - wheat and maize. Hg stress decreased growth and lignin contents, significantly affected phenylpropanoid and monolignol pathways (PAL, phenylalanine ammonia-lyase; 4-coumarate: CoA ligase, 4CL; cinnamyl alcohol dehydrogenase, CAD), with maize identified to be more sensitive to Hg stress than wheat. Among the tissue types, sheath encountered severe damage compared to leaves and roots. Hg translocation in maize was about twice that in wheat. Interestingly, total NO produced under Hg stress was significantly decreased compared to control, with maximum reduction of 43.4% and 42.9% in wheat and maize sheath, respectively. Regression analysis between lignin and NO contents or the activities of three enzymes including CAD, 4CL and PAL displayed the importance of NO contents, CAD, 4CL and PAL for lignin synthesis. Further, the gene expression profiles encoding CAD, 4CL and PAL provided support for the damaging effect of Hg on wheat sheath, and maize shoot. To validate NO potential to mitigate Hg toxicity in maize and wheat, NO donor and NO synthase inhibitor were supplemented along with Hg. The resulting phenotype, histochemical analysis and lignin contents showed that NO mitigated Hg toxicity by improving growth and lignin synthesis and accumulation. In summary, Hg sensitivity was higher in maize seedlings compared to wheat, which was associated with the lower lignin contents and reduced NO contents. External supplementation of NO is proposed as a sustainable approach to mitigate Hg toxicity in maize and wheat.


Assuntos
Mercúrio , Triticum , Lignina/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Óxido Nítrico/metabolismo , Triticum/metabolismo , Zea mays/metabolismo
12.
Sci Total Environ ; 817: 152895, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998757

RESUMO

Marine microalgae offer a promising feedstock for biofuels and other valuable compounds for biorefining and carry immense potential to contribute to a clean energy and environment future. However, it is currently not economically feasible to use marine algae to produce biofuels, and the potential bioactive chemicals account for only a small market share. The production of algal biomass with multiple valuable chemicals is closely related to the algal species, cultivation conditions, culture systems, and production modes. Thus, higher requirements for screening of dominant algal strains, developing integrated technologies with the optimum culture conditions, efficient cultivation systems, and production modes to exploit algal biomass for biorefinery applications, are all needed. This review summarizes the screening of dominant microalgae, discusses the environmental conditions that may affect the growth, as well as the culture systems and production modes, and further emphasizes the valorization options of the algal biomass, which should help to offer a sustainable approach to run a profitable marine algae production system.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Plantas , Tecnologia
13.
Sci Total Environ ; 815: 152922, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999075

RESUMO

Soil contamination with toxic metals and metalloids has become a major threat to global food security. Among various immobilization agents that can stabilize toxic metal(loid)s effectively, biochar is promising due to its ability to restore soil health. Yet the aging characteristics of biochar following its amendment in soil remain poorly explored. Therefore, this study used standard biochars to depict their aging effects on remediation of metal(loid)-contaminated soil. A total of 2304 observations were made, including 6 biochar feedstocks (rice husk, soft wood, oilseed rape straw, miscanthus straw, sewage sludge and wheat straw), 2 pyrolysis temperatures (550 °C, 700 °C), 8 metal(loid)s (Mn, Ni, Cu, Zn, As, Cd, Sb, Pb), 4 aging methods (natural aging, freeze-thaw cycling, wet-dry cycling, chemical oxidation with H2O2), and 6 sampling intervals. Sewage sludge biochars exhibited the highest resistance to both artificial and natural aging, which may be related to the abundant oxygen-containing functional groups that favor metal complexation, and poorly-developed pore structures that limit the access of natural aging forces. A distinct relationship between ash and temperature was observed, where for high-ash biochars, an increase in pyrolysis temperature indicated lower resistance to aging, while for low-ash biochars, elevated pyrolysis temperature led to higher resistance. The aging behaviors of Cu and Sb were quite similar, which were both highly susceptible to chemical oxidation-induced dissolved organic carbon (DOC) release. Wet-dry cycling and freeze-thaw cycling revealed aging patterns that were similar to those of naturally aged soils as confirmed by cluster analysis. Lab aging data were then compared with existing biochar field aging results. Contrasting long-term immobilization performances were found in different studies, which were attributed to various causes associated with both biochar property and climate. The results of this study provide fresh insights into the long-term risks in the management of metal(loid)-contaminated agricultural soils.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal , Peróxido de Hidrogênio , Poluentes do Solo/análise
14.
Environ Pollut ; 287: 117641, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426384

RESUMO

Salinity is a limiting factor in the growth of plants in coastal wetlands. The interaction of halophytes with salt-tolerant endophytes has been one of the major concerns in this area. However, the mechanism by which endophytes promote halophyte growth remains unclear. The growth and physiological responses of Suaeda salsa inoculated with endophytic bacteria (Sphingomonas prati and Sphingomonas zeicaulis) at 0 ‰ and 20 ‰ NaCl were studied. The results showed that Sphingomonas zeicaulis had stronger positive effects on the growth of Suaeda salsa under 0 ‰ NaCl, and Sphingomonas prati performed better under 20 ‰ NaCl. Sphingomonas prati inoculation increased the mean height, root length, fresh weight and dry weight by 45.43%, 9.91%, 82.00% and 102.25%, respectively, compared with the uninoculated treatment at 20 ‰ NaCl. Sphingomonas prati inoculation decreased MDA content by 23.78%, while the soluble sugar and soluble protein contents increased by 15.08% and 12.57%, respectively, compared to the control, at 20 ‰ NaCl. Increases in SOD and CAT in the Sphingomonas prati inoculation were 1.03 and 1.47-fold greater, respectively, than in the Sphingomonas zeicaulis inoculation, under 20 ‰ NaCl. Moreover, Sphingomonas prati and Sphingomonas zeicaulis had antagonistic interactions in Suaeda salsa according to the results of the "interaction equation" (most G values were negative). PCA, clustering analysis and the PLS model revealed two mechanisms for regulating plant salt tolerance by which Sphingomonas prati enhanced Suaeda salsa growth: (1) Sphingomonas prati improved intracellular osmotic metabolism and (2) Sphingomonas prati promoted the production of CAT in the antioxidant enzyme system and retained permeability. This study provides new insight into the comprehensive understanding and evaluation of endophytic bacteria as biological inoculants in plants under salt stress.


Assuntos
Chenopodiaceae , Tolerância ao Sal , Bactérias , Plantas Tolerantes a Sal , Sphingomonas , Áreas Alagadas
15.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011277

RESUMO

Phytohormones are a class of small organic molecules that are widely used in higher plants and microalgae as chemical messengers. Phytohormones play a regulatory role in the physiological metabolism of cells, including promoting cell division, increasing stress tolerance, and improving photosynthetic efficiency, and thereby increasing biomass, oil, chlorophyll, and protein content. However, traditional abiotic stress methods for inducing the accumulation of energy storage substances in microalgae, such as high light intensity, high salinity, and heavy metals, will affect the growth of microalgae and will ultimately limit the efficient accumulation of energy storage substances. Therefore, the addition of phytohormones not only helps to reduce production costs but also improves the efficiency of biofuel utilization. However, accurate and sensitive phytohormones determination and analytical methods are the basis for plant hormone research. In this study, the characteristics of phytohormones in microalgae and research progress for regulating the accumulation of energy storage substances in microalgae by exogenous phytohormones, combined with abiotic stress conditions at home and abroad, are summarized. The possible metabolic mechanism of phytohormones in microalgae is discussed, and possible future research directions are put forward, which provide a theoretical basis for the application of phytohormones in microalgae.


Assuntos
Microalgas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Biomarcadores , Biomassa , Vias Biossintéticas , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Técnicas Eletroquímicas , Microalgas/química , Estresse Oxidativo , Fotossíntese , Reguladores de Crescimento de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
16.
Plant Physiol Biochem ; 155: 756-768, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32882617

RESUMO

Drought is a key threat to maize growth and yield. Understanding the mechanism of immature tassel (IT) response to long term drought is of paramount importance. Here, the maize inbred line PH6WC was tested under well-watered (CK) and two water deficit treatments (WD1 and WD2). The final IT length in the WD1 and WD2 treatments decreased by nearly 6.2% and 21.2% compared to the CK, respectively, and the average accumulation rate IT dry matter was 1.5-fold and 1.8-fold slower, respectively. Furthermore, RNA sequencing analysis was conducted on the IT sampled at 30 days after the WD treatments. In total, the cellular component in gene ontology (GO) analysis suggested that the differentially expressed genes were significantly enriched in three common terms (apoplast, plant-type cell wall, and anchored component of membrane) among the CK vs WD1, CK vs WD2, and WD1 vs WD2 comparisons. Next, a co-expression network analysis identified 44 modules that contained global expression genes. Finally, by combining the GO analysis with modules, nine genes involved in carbohydrate metabolism and the antioxidant system were screened out, and the six corresponding physiological parameters were all significantly increased under the WD treatments. These results showed that, although the IT length and dry matter decreased, the IT enhanced the adaptation to drought by regulating their own genetic and physiological changes.


Assuntos
Secas , Inflorescência/crescimento & desenvolvimento , Estresse Fisiológico , Transcriptoma , Zea mays/fisiologia , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Solo , Água , Zea mays/genética
17.
Huan Jing Ke Xue ; 41(4): 1941-1949, 2020 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608703

RESUMO

The use of biochar to improve adversity of soil has received increasing attention. Enteromorpha prolifera biochar is used to repair coastal saline-alkali soil, which can not only utilize Enteromorpha prolifera but can also increase the scale of the coastal land reserve. In this study, the method of soil culture experiments was used to explore the effect and pathway of 0%-3% addition of Enteromorpha prolifera on the improvement of saline-alkali soil. The results showed that the optimum preparation temperature of Enteromorpha prolifera biochar suitable for saline-alkali soil improvement was 400℃, and the optimum addition amount was 1.5%. At the optimum level, although the biochar had a negative effect, such as increasing soil salinity (0.12%) and pH (1.49%), it also produced positive effects, such as reducing soil Na+/K+ by 55.73%, increasing mineral content, and improving water conductivity. Enteromorpha prolifera biochar improved soil physicochemical and biological properties, increased nutrient content, enhanced microbial activity, improved soil nutrient availability, and produced positive effects. These positive effects were characterized by reducing soil bulk density by 11.35%, increasing organic matter by 42.64%, increasing the proportion of organic carbon in total carbon by 3.84 times, increasing the proportion of available phosphorus in total phosphorus by 4.15 times, and increasing soil invertase activity by 2.39 times, urease activity by 1.18 times, and catalase activity 1.50 times. Therefore, the positive effect of Enteromorpha prolifera biochar on saline-alkali soil is more than negative, and it can be used for the improvement of coastal saline-alkali soil. This study provides a new path for the resource utilization of Enteromorpha prolifera and the improvement of the ecological environment of coastal saline-alkali soil.


Assuntos
Carvão Vegetal , Solo , Álcalis , Carbono
18.
Plant Physiol Biochem ; 142: 263-274, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31330393

RESUMO

To explain the underlying mechanism of melatonin-mediated drought stress responses in maize, maize pre-treated with or without melatonin was subjected to 20% PEG nutrient solution to induce drought stress. We found that exogenous melatonin significantly improved drought tolerance, demonstrated by improved photosynthesis, reduced ROS accumulation, enhanced activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and increased content of glutathione (GSH). Comparative iTRAQ proteomic analyses revealed a higher abundance of differentially expressed proteins (DEPs) in melatonin-treated maize under drought stress for carbon fixation in photosynthetic organisms, photosynthesis, biosynthesis of amino acids, and biosynthesis of secondary metabolites, compared to untreated plants. Changes in the above molecular mechanisms could explain the melatonin-induced physiological effects associated with drought tolerance. In summary, this study provides a more integrated picture about the effects of melatonin on the physiological and molecular mechanisms in maize seedlings responding to drought stress.


Assuntos
Melatonina/metabolismo , Estresse Oxidativo , Folhas de Planta/metabolismo , Zea mays/metabolismo , Catalase/metabolismo , Desidratação , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Melatonina/farmacologia , Melatonina/fisiologia , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
19.
Nitric Oxide ; 81: 46-56, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296585

RESUMO

Nitric oxide (NO) is an important bioactive molecule that functions in regulating diverse abiotic stresses in plants, whereas its molecular mechanism remains obscure. In this study, treatment with 0.1 mM NO donor (sodium nitroprusside, SNP) significantly alleviated the inhibited growth induced by 15% polyethyleneglycol (PEG)-stimulated water deficiency (WD) for 3 days in maize seedlings, manifested by less decreased plant total fresh weight and dry weight. Comprehensive proteome analysis was further used to measure the expression profiles of leaf proteins of SNP-pretreated maize seedlings under WD conditions to explore the molecular mechanisms of NO-induced WD tolerance. Using 2-DE method, 135 protein spots showed significantly enhanced or reduced abundance, of which 102 spots were successfully identified MALDI-TOF/TOF MS. The identified protein species were associated with diverse functions, and most (52/83, 62.7%) of known protein species were related to photosynthetic processes. Compared to alone PEG treatment, the abundance of 25 identified protein species in SNP + PEG treatment were enhanced among the identified photosynthesis-related protein species. In addition, exogenous SNP application dramatically regulated chlorophyll α fluorescence kinetics e.g. the increase of maximum quantum yield of PSII (Fv/Fm), photosynthetic performance index (PI), and IP phase, whereas it remarkably reduced the polyphasic OJIP fluorescence transient, the accumulation of reactive oxygen species (H2O2 and O2•-) and malondialdehyde (MDA). These findings suggest that the NO-induced WD tolerance could be associated with improved photosynthetic capability in higher plants.


Assuntos
Óxido Nítrico/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Plântula/fisiologia , Zea mays/fisiologia , Desidratação , Eletroforese em Gel Bidimensional , Nitroprussiato/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Polietilenoglicóis/farmacologia , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zea mays/efeitos dos fármacos
20.
J Plant Physiol ; 228: 29-38, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29852332

RESUMO

Low water availability is a major abiotic factor limiting photosynthesis and the growth and yield of crops. Maize (Zea mays) is among the most drought-sensitive cereal crops. Herein, the physiological and proteomic changes of maize seedlings caused by polyethylene-glycol-induced water deficit were analyzed. The results showed that malondialdehyde and proline contents increased continuously in the treated seedlings. Soluble sugar content and superoxide dismutase activity were upregulated initially but became downregulated under prolonged water deficit. A total of 104 proteins were found to be differentially accumulated under water stress. The identified proteins were mainly involved in photosynthesis, carbohydrate metabolism, stress defense, energy production, and protein metabolism. Interestingly, substantial incongruence between protein and transcript levels was observed, indicating that gene expression in water-stressed maize seedlings is controlled by complex mechanisms. Finally, we propose a hypothetical model that includes the different molecular, physiological, and biochemical changes that occurred during the response and tolerance of maize seedlings to water deficiency. Our study provides valuable insight for further research into the overall mechanisms underlying drought response and tolerance in maize and other plants.


Assuntos
Plântula/metabolismo , Zea mays/metabolismo , Desidratação , Secas , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plântula/fisiologia , Estresse Fisiológico/fisiologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA