Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mLife ; 3(1): 14-20, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38827507

RESUMO

Clostridioides difficile is a leading cause of healthcare-associated infections, causing billions of economic losses every year. Its symptoms range from mild diarrhea to life-threatening damage to the colon. Transmission and recurrence of C. difficile infection (CDI) are mediated by the metabolically dormant spores, while the virulence of C. difficile is mainly due to the two large clostridial toxins, TcdA and TcdB. Producing toxins or forming spores are two different strategies for C. difficile to cope with harsh environmental conditions. It is of great significance to understand the molecular mechanisms for C. difficile to skew to either of the cellular processes. Here, we summarize the current understanding of the regulation and connections between toxin production and sporulation in C. difficile and further discuss the potential solutions for yet-to-be-answered questions.

2.
Plant Commun ; 4(4): 100590, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36919240

RESUMO

Awns are important morphological markers for wheat and exert a strong physiological effect on wheat yield. The awn elongation suppressor B1 has recently been cloned through association and linkage analysis in wheat. However, the mechanism of awn inhibition centered around B1 remains to be clarified. Here, we identified an allelic variant in the coding region of B1 through analysis of re-sequencing data; this variant causes an amino acid substitution and premature termination, resulting in a long-awn phenotype. Transcriptome analysis indicated that B1 inhibited awn elongation by impeding cytokinin- and auxin-promoted cell division. Moreover, B1 directly repressed the expression of TaRAE2 and TaLks2, whose orthologs have been reported to promote awn development in rice or barley. More importantly, we found that TaTCP4 and TaTCP10 synergistically inhibited the expression of B1, and a G-to-A mutation in the B1 promoter attenuated its inhibition by TaTCP4/10. Taken together, our results reveal novel mechanisms of awn development and provide genetic resources for trait improvement in wheat.


Assuntos
Hordeum , Triticum , Triticum/genética , Mutação , Fenótipo , Hordeum/genética , Divisão Celular
3.
Materials (Basel) ; 15(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207984

RESUMO

High-entropy alloys have good application prospects in nuclear power plants due to their excellent mechanical properties and radiation resistance. In this paper, the microstructure of the Co32Cr28Ni32.94Al4.06Ti3 high-entropy alloy was researched using metallurgical microscopy, X-ray diffraction, and scanning electron microscopy. The mechanical properties were tested using a Vickers microhardness tester and a tensile testing machine, respectively. The results showed that Co32Cr28Ni32.94Al4.06Ti3 had a single-phase, disordered, face-centered, cubic solid-solution structure and was strengthened by solid solution. The alloy lattice parameter and density were estimated as 0.304 nm and 7.89 g/cm3, respectively. The test results indicated that the alloy had satisfactory mechanical properties with yield stress and tensile strength of about 530 MPa and 985 MPa, respectively.

4.
Comput Methods Programs Biomed ; 215: 106610, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35077902

RESUMO

BACKGROUND AND OBJECTIVES: Automatic airway segmentation from chest computed tomography (CT) scans plays an important role in pulmonary disease diagnosis and computer-assisted therapy. However, low contrast at peripheral branches and complex tree-like structures remain as two mainly challenges for airway segmentation. Recent research has illustrated that deep learning methods perform well in segmentation tasks. Motivated by these works, a coarse-to-fine segmentation framework is proposed to obtain a complete airway tree. METHODS: Our framework segments the overall airway and small branches via the multi-information fusion convolution neural network (Mif-CNN) and the CNN-based region growing, respectively. In Mif-CNN, atrous spatial pyramid pooling (ASPP) is integrated into a u-shaped network, and it can expend the receptive field and capture multi-scale information. Meanwhile, boundary and location information are incorporated into semantic information. These information are fused to help Mif-CNN utilize additional context knowledge and useful features. To improve the performance of the segmentation result, the CNN-based region growing method is designed to focus on obtaining small branches. A voxel classification network (VCN), which can entirely capture the rich information around each voxel, is applied to classify the voxels into airway and non-airway. In addition, a shape reconstruction method is used to refine the airway tree. RESULTS: We evaluate our method on a private dataset and a public dataset from EXACT09. Compared with the segmentation results from other methods, our method demonstrated promising accuracy in complete airway tree segmentation. In the private dataset, the Dice similarity coefficient (DSC), Intersection over Union (IoU), false positive rate (FPR), and sensitivity are 93.5%, 87.8%, 0.015%, and 90.8%, respectively. In the public dataset, the DSC, IoU, FPR, and sensitivity are 95.8%, 91.9%, 0.053% and 96.6%, respectively. CONCLUSION: The proposed Mif-CNN and CNN-based region growing method segment the airway tree accurately and efficiently in CT scans. Experimental results also demonstrate that the framework is ready for application in computer-aided diagnosis systems for lung disease and other related works.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Pulmão/diagnóstico por imagem , Tórax , Tomografia Computadorizada por Raios X
5.
BMC Oral Health ; 21(1): 301, 2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120593

RESUMO

BACKGROUND: The mechanics of double key loop (DKL) are not well defined, and this finite element study was designed to explore its force system. METHODS: A simplified 3-dimensional finite element model of single and double key loops with an archwire between the lateral incisor and second premolar was established in Ansys Workbench 17.0. Activation in Type-1 (retraction at the distal end), Type-2 (retraction at the distal key) and Type-3 (Type-2 plus ligation between keys) was simulated. The vertical force, load/deflection ratio and moment/force ratio of stainless-steel and titanium-molybdenum alloy (TMA) loops were calculated and compared. RESULTS: The double key loop generated approximately 40% of the force of a single key loop. Type-2 loading of DKL showed a higher L/D ratio than Type-1 loading with a similar M/F ratio. Type-3 loading of DKL showed the highest M/F ratio with a similar L/D ratio as single key loop. The M/F ratio in Type-3 loading increased with the decreasing of retraction force. The DKL of TMA produced approximately 40% of the force and moment compared with those of SS in all loading types. When activated at equal distances below 1 mm, the M/F ratios of SS and TMA DKL with equal preactivation angles were almost the same. CONCLUSION: The M/F ratio on anterior teeth increases with the preactivation angle and deactivation of DKL. The M/F ratio at a certain distance of activation mainly depends on the preactivation angle instead of the wire material. TMA is recommended as a substitute for SS in DKL for a lower magnitude of force.


Assuntos
Desenho de Aparelho Ortodôntico , Fios Ortodônticos , Ligas Dentárias , Análise do Estresse Dentário , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Técnicas de Movimentação Dentária
6.
Nanotechnology ; 31(33): 335504, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32353833

RESUMO

Flexible sensors at small scales have potential applications in many fields. Until now, the research on high-performance vibration sensors based on soft materials with high sensitivity and precision, fast response and high stability are still in its infancy. In this work, a flexible, wearable and high precision film sensor based on multi-walled carbon nanotube (MWCNT) was prepared via a vacuum filtration process and then encapsulated within polydimethylsiloxane (PDMS). The sensor exhibits an ultrahigh sensitivity with gauge factor of 214.3 at flexural strain of 0.4%. When used to monitor the vibration responses of a carbon-fiber beam induced by the base excitation and impact hammer, the time and frequency responses were comparable with the results obtained by the accelerometer, with difference less than 1\!%. In addition, when the MWCNT/PDMS thin film was employed as an electronic skin sensor attached on the human body to detect human activities, the high sensitivity and repeatability demonstrate a great potential application in monitoring human motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA