Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35047043

RESUMO

OBJECTIVE: By integrating meta-analysis and network pharmacology strategy, the clinical efficacy of Zhishe Tongluo capsule in the treatment of cerebral infarction was evaluated, and the intervention mechanism was preliminary explored. METHODS: Through meta-analysis, the Chinese and English literature of the randomized controlled trial (RCT) of Zhishe Tongluo capsule in the treatment of cerebral infarction was comprehensively searched. Based on the standard of Na Pai, the quantitative literature was determined and the Review Manager data were statistically analyzed. RESULTS: A total of 10 RCTs literatures were included. These literatures included a total of 1278 subjects, of which 670 were in the treatment group and 608 were in the control group. In terms of indicators of efficiency and adverse reaction rate, the treatment group was better than the control group. There was a statistical difference (P < 0.05); a total of 559 chemical constituents and 2306 potential targets were obtained from the online database. Of these, 201 components, 145 targets, and 185 pathways were closely related to cerebral infarction. CONCLUSIONS: The available evidence indicates that the addition of Zhishe Tongluo capsule to the conventional treatment of Western medicine can improve the clinical efficacy of cerebral infarction and has some advantages in regulating blood lipids and hemorheology, but the overall evidence level is low, which still needs to be further supported by large-scale and multicenter RCTs; intervention of brain infarction by Zhishe Tongluo capsule is a comprehensive result of multicomponent and multi-target interactions. On the basis of the combined meta-analysis and network pharmacology in scientific attempts, it also provides a reference for the clinical evaluation of other drugs and mechanism research.

3.
J Control Release ; 236: 31-7, 2016 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-27297781

RESUMO

We recently reported that the Ins2(Akita) mouse is a good model for late-onset diabetic retinopathy. Here, we investigated the effect of miR200-b, a potential anti-angiogenic factor, on VEGF receptor 2 (VEGFR-2) expression and to determine the underlying angiogenic response in mouse endothelial cells, and in retinas from aged Ins2(Akita) mice. MiR200-b and its native flanking sequences were amplified and cloned into a pCAG-eGFP vector directed by the ubiquitous CAG promoter (namely pCAG-miR200-b-IRES-eGFP). The plasmid was compacted by CK30PEG10K into DNA nanoparticles (NPs) for in vivo delivery. Murine endothelial cell line, SVEC4-10, was first transfected with the plasmid. The mRNA levels of VEGF and VEGFR-2 were quantified by qRT-PCR and showed significant reduction in message expression compared with lipofectamine-transfected cells. Transfection of miR200-b suppressed the migration of SVEC4-10 cells. There was a significant inverse correlation between the level of expression of miR200-b and VEGFR-2. Intravitreal injection of miR200-b DNA NPs significantly reduced protein levels of VEGFR-2 as revealed by western blot and markedly suppressed angiogenesis as evaluated by fundus imaging in aged Ins2(Akita) mice even after 3months of post-injection. These findings suggest that NP-mediated miR200-b delivery has negatively regulated VEGFR-2 expression in vivo.


Assuntos
Retinopatia Diabética/tratamento farmacológico , MicroRNAs/administração & dosagem , Nanopartículas/química , Neovascularização Fisiológica , Animais , Linhagem Celular , Movimento Celular , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Injeções Intravítreas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Peptídeos/química , Polietilenoglicóis/química , Transfecção/métodos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
4.
Invest Ophthalmol Vis Sci ; 54(1): 574-84, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23221078

RESUMO

PURPOSE: Diabetic retinopathy (DR) is the leading cause of blindness among working age adults and does not have any curative treatments. Although chemical- and injury-induced models of retinal neovascularization exist, the need for a genetic model that closely simulates the DR pathologic process is great. METHODS: Here we characterize the development of the retinal disease phenotype in a genetic model of type 1 diabetes, the Ins2(Akita) mouse, using structural, biochemical, molecular biological, and functional techniques. RESULTS: This model exhibits hyperglycemia by 2 months of age and by 6 months we detect retinal complications in Ins2(Akita) males, including early signs of vascular damage consistent with DR, specifically the appearance of pericyte ghosts, vascular leakage, and microaneurysm formation. By 9 months of age, these changes are accompanied by later vascular signs of DR, specifically retinal neovascularization, formation of new capillary beds, and the presence of new blood vessels abnormally localized in the outer plexiform layer. Consistent with the debilitating effects of such vasculopathy, we also observe increased retinal apoptosis and decreased retinal function measured by electroretinogram. CONCLUSIONS: These data indicate that the Ins2(Akita) mouse is a good model for later-onset DR, modeling both early and some late disease signs. Furthermore, this work suggests that this model may be suitable for testing and development of targeted DR therapies.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética/genética , Regulação da Expressão Gênica , Insulina/genética , RNA/genética , Neovascularização Retiniana/genética , Vasos Retinianos/patologia , Animais , Apoptose , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Eletrorretinografia , Feminino , Insulina/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
PLoS One ; 7(12): e52189, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272225

RESUMO

Gene therapy is a critical tool for the treatment of monogenic retinal diseases. However, the limited vector capacity of the current benchmark delivery strategy, adeno-associated virus (AAV), makes development of larger capacity alternatives, such as compacted DNA nanoparticles (NPs), critical. Here we conduct a side-by-side comparison of self-complementary AAV and CK30PEG NPs using matched ITR plasmids. We report that although AAVs are more efficient per vector genome (vg) than NPs, NPs can drive gene expression on a comparable scale and longevity to AAV. We show that subretinally injected NPs do not leave the eye while some of the AAV-injected animals exhibited vector DNA and GFP expression in the visual pathways of the brain from PI-60 onward. As a result, these NPs have the potential to become a successful alternative for ocular gene therapy, especially for the multitude of genes too large for AAV vectors.


Assuntos
DNA/química , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Nanopartículas/química , Animais , Encéfalo/metabolismo , Expressão Gênica , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Retina/metabolismo , Transdução Genética
6.
Mol Vis ; 17: 436-42, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21321671

RESUMO

PURPOSE: The purpose of this study was to identify the mutation(s) or deletion(s) of the forkhead box protein L2 (FOXL2) gene in Chinese patients with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). METHODS: Genomic DNA extracted from peripheral blood was collected from two Chinese families and from one sporadic case. PCR direct sequencing and quantitative real-time PCR-based copy number screening for the whole exon of FOXL2 were performed. RESULTS: Direct sequencing revealed an indel mutation c.50C→TA in the sporadic case which resulted in a frameshift generating 78 novel amino acids and terminating prematurely at codon 95. Deletions in the FOXL2 gene were confirmed by quantitative real-time PCR (q-real-time PCR) in two families in which intragenic mutations were excluded by direct sequencing. These changes containing deletions and a de novo mutation were not detected either in the non-carrier relatives or in 100 normal controls. CONCLUSIONS: This study identified two deletions and a de novo mutation in the FOXL2 gene in Chinese BPES patients. This is the first study to report FOXL2 gene deletions detected by q-real-time PCR in this ethnic group. This technique enriches the diagnostic methods of molecular genetics in BPES patients. The de novo mutation expands the mutation spectrum of FOXL2.


Assuntos
Fatores de Transcrição Forkhead/genética , Adulto , Aminoácidos/química , Blefarofimose/etnologia , Blefarofimose/genética , Criança , Pré-Escolar , China , Códon , Análise Mutacional de DNA , Feminino , Proteína Forkhead Box L2 , Mutação da Fase de Leitura , Deleção de Genes , Humanos , Lactente , Masculino , Menopausa Precoce/etnologia , Menopausa Precoce/genética , Modelos Genéticos , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Anormalidades da Pele/etnologia , Anormalidades da Pele/genética , Síndrome
7.
J Pathol ; 219(4): 446-54, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19768732

RESUMO

Vascular endothelial growth factor (VEGF-A) is a major pathogenic factor and a therapeutic target for age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. Despite intensive effort in the field, the cellular mechanisms of VEGF action remain virtually uninvestigated. This situation makes it difficult to design cellular target-based therapeutics for these diseases. In light of the recent finding that VEGF is a potential neurotrophic factor, revealing the cellular mechanisms of VEGF action becomes necessary to preserve its beneficial effect and inhibit its pathological function in long-term anti-VEGF therapeutics for ocular vascular diseases. We therefore generated conditional VEGF knockout mice with an inducible Cre/lox system and determined the significance of Müller cell-derived VEGF in retinal development and maintenance and ischaemia-induced neovascularizartion and vascular leakage. Retinal development in the conditional VEGF knockout mice was analysed by examining retinal and choroidal vasculatures and retinal morphology and function. Ischaemia-induced retinal neovascularization and vascular leakage in the conditional VEGF knockout mice were analysed with fluorescein angiography, quantification of proliferative neovascular cells, immunohistochemistry, and immunoblotting using an oxygen-induced retinopathy model. Our results demonstrated that disruption of Müller cell-derived VEGF resulted in no apparent defects in retinal and choroidal vasculatures and retinal morphology and function, significant inhibition of the ischaemia-induced retinal neovascularization and vascular leakage, and attenuation of the ischaemia-induced breakdown of the blood-retina barrier. These results suggest that the retinal Müller cell-derived VEGF is a major contributor to ischaemia-induced retinal vascular leakage and pre-retinal and intra-retinal neovascularization. The observation that a significant, but not complete, reduction of VEGF in the retina does not cause detectable retinal degeneration suggests that appropriate doses of anti-VEGF agents may be important to the safe treatment of retinal vascular diseases.


Assuntos
Neovascularização Retiniana/fisiopatologia , Neurônios Retinianos/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Permeabilidade Capilar/fisiologia , Células Cultivadas , Proteínas do Olho/metabolismo , Humanos , Isquemia/complicações , Isquemia/fisiopatologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Ocludina , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Vasos Retinianos/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/deficiência , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA