Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 261: 119701, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094899

RESUMO

Antibacterial resistance in wild animals has been increasingly reported worldwide, even though they are usually not directly exposed to clinically relevant antibiotics. Crested ibis, one of the rarest birds in the world, usually forages in paddy fields and prefer to nest and breed near villages that is greatly influenced by anthropogenic activities. We sampled the feces of crested ibises, as well as their habitat environment samples, to explore the pollution characteristics of heavy metals, antibiotics and antibiotic resistance genes (ARGs). Results showed that the pollution characteristics of heavy metals, antibiotic, ARGs and gut microbiota of crested ibis were more related by host lifestyle and habitats. Captive ibises had higher relative abundances of the total ARGs and tetracycline concentrations compared with feralization and wild ibises, while the heavy metal contents had shown the opposite result. The Characteristics of pollutants in the corresponding environmental samples also exhibited high similarity with the results of fecal samples. The relative abundances of Proteobacteria and Actinobacteria were significantly different between captive and wild individuals, while the abundance of majority bacterial genera was generally higher in wild populations. The concentrations of heavy metals in soil (Cd, Cu and Zn) and water (Cd, Cu, Zn and Cr) were both exceeded the background soil levels or surface water quality standards, suggesting multi-element contamination in the habitat. Ecological risk assessments of soils by Igeo and Er showed that the habitats of wild ibises were heavily and moderately contaminated by Cd, which would possibly pose a threat to the health of ibises. PLS-PM analysis indicated that microbial compositions and residual antibiotics had the most substantial impact on the dynamic changes in ARGs of ibis. Overall, this work provides a comprehensive understanding of the characteristics, risks of those contaminations, and their effects on the ARGs in the habitat of crested ibis.

2.
Sci Total Environ ; 948: 174944, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047821

RESUMO

The downward migration of soil heavy metal(loid)s (HMs) at smelting sites poses a significant risk to groundwater. Therefore, it is requisite for pollution control to determine the pollution characteristics of soil HMs and their migration risks to groundwater. 198 soil samples collected from a Pb-Zn smelting site were classified into 6 clusters by self-organizing map (SOM) and K-means clustering. Cd, Zn, As, and Pb were identified as the characteristic contaminants of the site. The driving factors for the heterogeneous distribution of HMs have been validated through the implementation of K-means clustering and multiple-hits calculation. Using ultrafiltration extraction and microscopic analysis, the soil colloids were identified as crucial carriers facilitating the migration of HMs. Specifically, the colloidal fractions of Cd, Zn, and As, Pb in deep soil (3-4 m) accounted for 91 %, 78 %, 88 %, and 82 %, respectively, consistently surpassing those found in topsoil (0-0.5 m). It was primarily attributed to the strong affinity of HMs toward soil colloids (franklinite, PbS, and kaolinite) and dissolved organic matter (humic acids and protein). The research findings highlight the potential risk of colloidal HMs to groundwater contamination, providing valuable insights for the development of targeted management and remediation strategies.

3.
Opt Express ; 32(12): 20571-20588, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859436

RESUMO

Frequency-scanning interferometry (FSI) utilizing external cavity diode lasers (ECDL) stands out as a potent technique for absolute distance measurement. Nevertheless, the inherent scanning nonlinearity of ECDL and phase noise pose a challenge, as it can compromise the accuracy of phase extraction from interference signals, thereby reducing the measurement accuracy of FSI. In this study, we propose a composite algorithm aimed at mitigating non-orthogonal errors by integrating the least-squares and Heydemann correction technique. Furthermore, we employ Kalman filtering for precise phase tracking. We introduce a parameter selection strategy based on the statistical distribution of instantaneous frequency to achieve the fusion estimation of phase observation values and theoretical models, which starts a new perspective for the application of multi-dimensional data fusion in FSI measurement. Through simulation and experimental validation, the efficacy of this approach is confirmed. The experimental results show promising outcomes: with an average phase error of 0.12%, a standard deviation of less than 1.7 µm in absolute distance measurement, and an average positioning accuracy error of 0.29 µm.

4.
Front Plant Sci ; 15: 1351438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903426

RESUMO

Drought and salinity are two abiotic stresses that affect plant productivity. We exposed 2-year-old Platycladus orientalis saplings to single and combined stress of drought and salinity. Subsequently, the responses of physiological traits and soil properties were investigated. Biochemical traits such as leaf and root phytohormone content significantly increased under most stress conditions. Single drought stress resulted in significantly decreased nonstructural carbohydrate (NSC) content in stems and roots, while single salt stress and combined stress resulted in diverse response of NSC content. Xylem water potential of P. orientalis decreased significantly under both single drought and single salt stress, as well as the combined stress. Under the combined stress of drought and severe salt, xylem hydraulic conductivity significantly decreased while NSC content was unaffected, demonstrating that the risk of xylem hydraulic failure may be greater than carbon starvation. The tracheid lumen diameter and the tracheid double wall thickness of root and stem xylem was hardly affected by any stress, except for the stem tracheid lumen diameter, which was significantly increased under the combined stress. Soil ammonium nitrogen, nitrate nitrogen and available potassium content was only significantly affected by single salt stress, while soil available phosphorus content was not affected by any stress. Single drought stress had a stronger effect on the alpha diversity of rhizobacteria communities, and single salt stress had a stronger effect on soil nutrient availability, while combined stress showed relatively limited effect on these soil properties. Regarding physiological traits, responses of P. orientalis saplings under single and combined stress of drought and salt were diverse, and effects of combined stress could not be directly extrapolated from any single stress. Compared to single stress, the effect of combined stress on phytohormone content and hydraulic traits was negative to P. orientalis saplings, while the combined stress offset the negative effects of single drought stress on NSC content. Our study provided more comprehensive information on the response of the physiological traits and soil properties of P. orientalis saplings under single and combined stress of drought and salt, which would be helpful to understand the adapting mechanism of woody plants to abiotic stress.

5.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676919

RESUMO

Studying the response of physiological and xylem anatomical traits under cadmium stress is helpful to understand plants' response to heavy metal stress. Here, seedlings of Pinus thunbergii Parl. were treated with 50, 100 and 150 mg kg-1 Cd2+ for 28 days. Cadmium and nonstructural carbohydrate content of leaves, stems and roots, root Cd2+ flux, cadmium distribution pattern in stem xylem and phloem, stem xylem hydraulic traits, cell wall component fractions of stems and roots, phytohormonal content such as abscisic acid, gibberellic acid 3, molecule -indole-3-acetic acid, and jasmonic acid from both leaves and roots, as well as xylem anatomical traits from both stems and roots were measured. Root Cd2+ flux increased from 50 to 100 mmol L-1 Cd2+ stress, however it decreased at 150 mmol L-1 Cd2+. Cellulose and hemicellulose in leaves, stems and roots did not change significantly under cadmium stress, while pectin decreased significantly. The nonstructural carbohydrate content of both leaves and stems showed significant changes under cadmium stress while the root nonstructural carbohydrate content was not affected. In both leaves and roots, the abscisic acid content significantly increased under cadmium stress, while the gibberellic acid 3, indole-3-acetic acid and jasmonic acid methylester content significantly decreased. Both xylem specific hydraulic conductivity and xylem water potential decreased with cadmium stress, however tracheid diameter and double wall thickness of the stems and roots were not affected. High cadmium intensity was found in both the stem xylem and phloem in all cadmium stressed treatments. Our study highlighted the in situ observation of cadmium distribution in both the xylem and phloem, and demonstrated the instant response of physiological traits such as xylem water potential, xylem specific hydraulic conductivity, root Cd2+ flux, nonstructural carbohydrate content, as well as phytohormonal content under cadmium stress, and the less affected traits such as xylem anatomical traits, cellulose and hemicellulose.


Assuntos
Cádmio , Pinus , Plântula , Xilema , Cádmio/metabolismo , Xilema/metabolismo , Xilema/fisiologia , Pinus/fisiologia , Pinus/anatomia & histologia , Pinus/metabolismo , Pinus/efeitos dos fármacos , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/anatomia & histologia , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Estresse Fisiológico , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos
6.
Opt Express ; 32(5): 7574-7582, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439435

RESUMO

Optical measurements are closely related to the optical signal-to-noise ratio (OSNR) of the laser, which can be improved using a tunable optical filter (TOF) to suppress frequency noise. For an external-cavity tunable laser with a tuning range larger than the TOF bandwidth, the wavelength at the center of the TOF passband must be varied based on the laser tuning. This study proposes a tunable-laser OSNR-enhancement method based on the Fabry-Pérot (FP) interferometer. The FP signal contains the wavelength information of the swept laser, which can be used to determine the real-time driving voltage of the TOF. Notably, the laser needs to be continuously tunable without mode hopping, and the free spectral range of the FP interferometer must be smaller than the TOF bandwidth.

7.
Polymers (Basel) ; 16(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256988

RESUMO

In this work, acrylic cellulose hydrogel, a typical natural polymer adsorbent, was modified using MXene through in situ polymerization to create a synthetic inorganic-polymer composite known as MXene/cellulose hydrogel. FTIR, XRD, SEM, and thermogravimetric analyses were applied to characterize the chemical structure and micromorphology. The MXene/cellulose hydrogel was utilized for the removal of Pb2+ from wastewater. Under optimal experimental conditions (initial Pb2+ concentration of 0.04 mol/L, adsorption time of 150 min, pH = 5.5, and MXene doping content of 50% at 30 °C), a maximum adsorption capacity of 410.57 mg/g was achieved. The MXene/cellulose hydrogel corresponded with the pseudo-second-order kinetic equation model and exhibited a better fit with the Freundlich isotherm model.

8.
Environ Geochem Health ; 46(1): 23, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225518

RESUMO

Using biological methods to improve saline soils is recognized as an eco-friendly and sustainable way. In this study, two indigenous algae YJ-1 and YJ-2 screened from salinized farmland were inoculated into saline soils with different salinization levels to investigate their potential in enhancing soil health by laboratory microcosm experiment. The results showed that individual inoculation of the two algae quickly resulted in the formation of algal crusts, and the chlorophyll content in the saline soils gradually increased with the incubation time. The soil pH decreased significantly from the initial 8.15-9.45 to 6.97-7.56 after 60-day incubation. The exopolysaccharides secretion and the activities of catalase, sucrase, and urease in saline soils also increased. Microalgal inoculation increased soil organic matter storage, while decreasing the available nutrient contents possibly due to the depletion of microalgal growth. PCA and PCC results identified that microalgal biomass as the predominant variable affecting soil quality. Overall, these data revealed the great potential of microalgae in the amelioration of saline soils, especially in pH reduction and enzyme activity enhancement. This study will provide the theoretical foundation for improving saline soils via algalization.


Assuntos
Microalgas , Solo , Solo/química , Biomassa , Clorofila , Fazendas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA