Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 765: 142740, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33071125

RESUMO

Mechanisms for hematotoxicity and health effects from exposure to low doses of benzene (BZ) remain to be identified. To address the information gap, our investigation was focused onto using appropriate populations and cell cultures to investigate novel BZ-induced effects such as disruption of DNA repair capacity (DRC). From our study, abnormal miRNAs were identified and validated using lymphocytes from 56 BZ-poisoned workers and 53 controls. In addition, 173 current BZ-exposed workers and 58 controls were investigated for key miRNA expression using RT-PCR and for cellular DRC using a challenge assay. Subsequently, the observed activities in lymphocytes were verified using human HL-60 (p53 null) and TK6 (p53 wild-type) cells via 1,4-benzoquinone (1,4-BQ) treatment and miR-222 interferences. The targeting of MDM2 by miR-222 was validated using a luciferase reporter. Our results indicate induction of genotoxicity in lymphocytes from workers with low exposure doses to BZ. In addition, miR-222 expression was up-regulated among both BZ-poisoned and BZ-exposed workers together with inverse association with DRC. Our in vitro validation studies using both cell lines indicate that 1,4-BQ exposure increased expression of miR-222 and Comet tail length but decreased DRC. Loss of miR-222 reduced DNA damage, but induced S-phase arrest and apoptosis. However, silencing of MDM2 failed to activate p53 in TK6 cells. In conclusion, our in vivo observations were confirmed by in vitro studies showing that BZ/1,4-BQ exposures caused genotoxicity and high expression of miR-222 which obstructed expression of the MDM2-p53 axis that led to failed activation of p53, abnormal DRC and serious biological consequences.


Assuntos
Benzeno , MicroRNAs , Apoptose , Benzeno/toxicidade , Dano ao DNA , Reparo do DNA , Humanos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
J Occup Environ Med ; 62(7): e308-e317, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730034

RESUMO

OBJECTIVE: This study investigates the mechanisms of benzene hematotoxicity. METHODS: We used microarray to detect expression profiles of long non-coding RNAs (lncRNAs) and mRNAs in peripheral lymphocytes from chronic benzene poisoning, acute myelocytic leukemia, and healthy controls. The lncRNAs and mRNAs were validated using real-time quantitative PCR (RT-qPCR). Cytokinesis-block micronucleus assay was used to analyze chromosomal aberration. RESULTS: We found 173 upregulated and 258 downregulated lncRNAs, and 695 upregulated and 804 downregulated mRNAs. The lncRNA CUST_40243 and mRNA PDGFC and CDKN1A associated with chronic benzene poisoning. Relevant inflammatory response, hematopoietic cell lineage, and cell cycle may be important pathways for the sifted lncRNAs and mRNAs. Furthermore, micronuclei frequency was significantly higher in off-post chronic benzene poisoning patients. CONCLUSIONS: Chromosomal aberration induced by benzene exposure is irreversible. The lncRNA CUST_40243 and mRNA PDGFC and CDKN1A are related to chronic benzene poisoning.


Assuntos
Benzeno/intoxicação , Leucemia Mieloide Aguda/genética , RNA Longo não Codificante/genética , Adulto , Aberrações Cromossômicas , Feminino , Regulação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/induzido quimicamente , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA