Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 258(3): 65, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566145

RESUMO

MAIN CONCLUSION: Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase 1 caused a taller phenotype, promoted secondary cell wall deposition, leaf enlargement, and early flowering, and reduced chlorophyll and anthocyanin accumulation and seed enlargement phenotype in Arabidopsis. Plant height and secondary cell wall (SCW) deposition are important plant traits. Gibberellins (GAs) play important roles in regulating plant height and SCWs deposition. Gibberellin 20-oxidase (GA20ox) is an important enzyme involved in GA biosynthesis. In the present study, we identified a GA synthesis gene in Camellia oleifera. The total length of the CoGA20ox1 gene sequence was 1146 bp, encoding 381 amino acids. Transgenic plants with CoGA20ox1 had a taller phenotype; a seed enlargement phenotype; promoted SCWs deposition, leaf enlargement, and early flowering; and reduced chlorophyll and anthocyanin accumulation. Genetic analysis showed that the mutant ga20ox1-3 Arabidopsis partially rescued the phenotype of CoGA20ox1 overexpression plants. The results showed that CoGA20ox1 participates in the growth and development of C. oleifera. The morphological changes in CoGA20ox1 overexpressed plants provide a theoretical basis for further exploration of GA biosynthesis and analysis of the molecular mechanism in C. oleifera.


Assuntos
Arabidopsis , Camellia , Arabidopsis/metabolismo , Camellia/genética , Camellia/metabolismo , Antocianinas/metabolismo , Expressão Ectópica do Gene , Giberelinas/metabolismo , Plantas Geneticamente Modificadas/genética , Parede Celular/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plants (Basel) ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447146

RESUMO

Investigations on the impact of drought stress on the reproductive growth of C. oleifera have been relatively limited compared to the extensive research conducted on its nutritional growth. To study the effects of drought stress on the growth and development of C. oleifera flower buds, we investigated the effects of drought stress on the bud anatomical structure, relative water content, relative electrical conductivity, antioxidant enzyme activity, osmoregulation substance content, and hormone contents of C. oleifera using 4-year-old potted plants ('Huaxin' cultivar) as experimental materials. We observed C. oleifera flower bud shrinkage, faded pollen colour, shortened style length, decreased relative water content, increased relative electrical conductivity, and decreased pollen germination rate under drought stress. As the stress treatment duration increased, the malondialdehyde (MDA), soluble sugar (SS), soluble protein (SP), and proline (Pro) contents, as well as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities increased. Moreover, the levels of the plant hormones indole acetic acid (IAA) and cytokinin (CTK) increased, whereas those of salicylic acid (SA) and jasmonic acid (JA) decreased, and those of abscisic acid (ABA) and gibberellin a3 (GA3) first increased and then decreased. Compared to the control group, the drought treatment group exhibited stronger antioxidant capacity, water regulation ability, and drought stress protection. These results indicate that C. oleifera is adaptable to drought-prone environments. The results of this study provide a theoretical basis for the evaluation of drought resistance in C. oleifera, as well as the development of water management strategies for cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA