Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Rep ; 14(1): 12467, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816531

RESUMO

The advent of Industry 4.0 has significantly promoted the field of intelligent manufacturing, which is facilitated by the development of new technologies are emerging. Robot technology and robot intelligence methods have rapidly developed and been widely applied. Manipulators are widely used in industry, and their control is a crucial research topic. The inverse kinematics solution of manipulators is an important part of manipulator control, which calculates the joint angles required for the end effector to reach a desired position and posture. Traditional inverse kinematics solution algorithms often face the problem of insufficient generalization, and iterative methods have challenges such as large computation and long solution time. This paper proposes a reinforcement learning-based inverse kinematics solution algorithm, called the MAPPO-IK algorithm. The algorithm trains the manipulator agent using the MAPPO algorithm and calculates the difference between the end effector state of the manipulator and the target posture in real-time by designing a reward mechanism, while considering Gaussian distance and cosine distance. Through experimental comparative analysis, the feasibility, computational efficiency, and superiority of this reinforcement learning algorithm are verified. Compared with traditional inverse kinematics solution algorithms, this method has good generalization and supports real-time computation, and the obtained result is a unique solution. Reinforcement learning algorithms have better adaptability to complex environments and can handle different sudden situations in different environments. This algorithm also has the advantages of path planning, intelligent obstacle avoidance, and other advantages in dynamically processing complex environmental scenes.

2.
RSC Adv ; 14(17): 12125-12130, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38628485

RESUMO

Material patterning through templates has provided an efficient way to meet the critical requirement for surface function in various fields. Here, we develop a self-releasing photolithographic process to make large-area freestanding templates with precise patterns. The low surface energy of substrates by hydrophobic treatment with proper silane modification ensures the template self-releasing. This method eliminates the need of mechanical separation or any sacrificial layers. Major steps including UV exposure and baking are optimized to realize high-quality structures and the final release of templates. The negative photoresists of SU-8 and polyimide are chosen to confirm the feasibility of this process. Wafer-scale freestanding templates with uniform microhole arrays are obtained with high structural fidelity, smooth surfaces and excellent flexibility. The hole size ranges from several to several tens of micrometers with an extremely low variation (<1%). These advantages could promote the application of precisely structured templates for surface patterning in material and surface science.

3.
Biosensors (Basel) ; 14(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667161

RESUMO

Enzyme-based biosensors commonly utilize the drop-casting method for their surface modification. However, the drawbacks of this technique, such as low reproducibility, coffee ring effects, and challenges in mass production, hinder its application. To overcome these limitations, we propose a novel surface functionalization strategy of enzyme crosslinking via inkjet printing for reagentless enzyme-based biosensors. This method includes printing three functional layers onto a screen-printed electrode: the enzyme layer, crosslinking layer, and protective layer. Nanomaterials and substrates are preloaded together during our inkjet printing. Inkjet-printed electrodes feature a uniform enzyme deposition, ensuring high reproducibility and superior electrochemical performance compared to traditional drop-casted ones. The resultant biosensors display high sensitivity, as well as a broad linear response in the physiological range of the serum phosphate. This enzyme crosslinking method has the potential to extend into various enzyme-based biosensors through altering functional layer components.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Enzimas Imobilizadas , Fosfatos , Enzimas Imobilizadas/química , Eletrodos , Impressão , Reprodutibilidade dos Testes
4.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257491

RESUMO

Atrial fibrillation, one of the most common persistent cardiac arrhythmias globally, is known for its rapid and irregular atrial rhythms. This study integrates the temporal convolutional network (TCN) and residual network (ResNet) frameworks to effectively classify atrial fibrillation in single-lead ECGs, thereby enhancing the application of neural networks in this field. Our model demonstrated significant success in detecting atrial fibrillation, with experimental results showing an accuracy rate of 97% and an F1 score of 87%. These figures indicate the model's exceptional performance in identifying both majority and minority classes, reflecting its balanced and accurate classification capability. This research offers new perspectives and tools for diagnosis and treatment in cardiology, grounded in advanced neural network technology.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Redes Neurais de Computação , Tecnologia
5.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432274

RESUMO

The fabrication of nanostructures usually involves chemical processes that have in certain steps. Especially, it is necessary to use the chemical etching method to release the as-patterned structures from the substrate in most of the transfer techniques. Here, a novel scheme of template transfer as developed for the fabrication of freestanding Au nanomembranes and nanowires by using a soluble PVP adhesive. The nanomembranes feature the periodic nanohole arrays with high uniformity. Without the substrates, these plasmonic nanohole arrays show symmetric and antisymmetric resonance modes with bright and dark spectral features, respectively, in transmission. Through the spectral analysis for reflection, we have disclosed that the usual dark mode in transmission is not really dark, but it reveals a distinct feature in reflection. Two coupling modes present distinct spectral features in transmission and reflection due to their different loss channels. To show their versatility, the freestanding nanomembranes were also employed as secondary templates to form Si nanowire arrays by the metal-assisted chemical etching method.

6.
Microsyst Nanoeng ; 8: 23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251688

RESUMO

Circulating tumor cells (CTCs) have tremendous potential to indicate disease progression and monitor therapeutic response using minimally invasive approaches. Considering the limitations of affinity strategies based on their cost, effectiveness, and simplicity, size-based enrichment methods that involve low-cost, label-free, and relatively simple protocols have been further promoted. Nevertheless, the key challenges of these methods are clogging issues and cell aggregation, which reduce the recovery rates and purity. Inspired by the natural phenomenon that the airflow around a windmill is disturbed, in this study, a windmill-like hole array on the SU-8 membrane was designed to perturb the fluid such that cells in a fluid would be able to self-mix and that the pressure acting on cells or the membrane would be dispersed to allow a greater velocity. In addition, based on the advantages of fluid coatings, a lipid coating was used to modify the membrane surface to prevent cell aggregation and clogging of the holes. Under the optimal conditions, recovery rates of 93% and 90% were found for A549 and HeLa cells in a clinical simulation test of our platform with a CTC concentration of 20-100 cells per milliliter of blood. The white blood cell (WBC) depletion rate was 98.7% (n = 15), and the CTC detection limit was less than 10 cells per milliliter of blood (n = 6). Moreover, compared with conventional membrane filtration, the advantages of the proposed device for the rapid (2 mL/min) and efficient enrichment of CTCs without clogging were shown both experimentally and theoretically. Due to its advantages in the efficient, rapid, uniform, and clog-free enrichment of CTCs, our platform offers great potential for metastatic detection and therapy analyses.

7.
Micromachines (Basel) ; 13(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35334696

RESUMO

Flexible pressure sensors have been widely applied in wearable devices, e-skin, and the new generation of robots. However, most of the current sensors use connecting wires for energy supply and signal transmission, which presents an obstacle for application scenarios requiring long endurance and large movement, especially. Flexible sensors combined with wireless technology is a promising research field for realizing efficient state sensing in an active state. Here, we designed and fabricated a soft wireless passive pressure sensor, with a fully flexible Ecoflex substrate and a multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) bilayer pyramid dielectric structure. Based on the principle of the radio-frequency resonator, the device achieved pressure sensing with a changeable capacitance. Subsequently, the effect of the pyramid density was simulated by the finite element method to improve the sensitivity. With one-step embossing and spin-coating methods, the fabricated sensor had an optimized sensitivity of 14.25 MHz/kPa in the low-pressure range. The sensor exhibited the potential for application in limb bending monitoring, thus demonstrating its value for long-term wireless clinical monitoring. Moreover, the radio frequency coupling field can be affected by approaching objects, which provides a possible route for realizing non-contact sensing in applications such as pre-collision warning.

8.
Research (Wash D C) ; 2021: 9757943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671744

RESUMO

Efficient acoustic communication across the water-air interface remains a great challenge owing to the extreme acoustic impedance mismatch. Few present acoustic metamaterials can be constructed on the free air-water interface for enhancing the acoustic transmission because of the interface instability. Previous strategies overcoming this difficulty were limited in practical usage, as well as the wide-angle and multifrequency acoustic transmission. Here, we report a simple and practical way to obtain the wide-angle and multifrequency water-air acoustic transmission with a tunable fluid-type acoustic metasurface (FAM). The FAM has a transmission enhancement of acoustic energy over 200 times, with a thickness less than the wavelength in water by three orders of magnitude. The FAM can work at an almost arbitrary water-to-air incident angle, and the operating frequencies can be flexibly adjusted. Multifrequency transmissions can be obtained with multilayer FAMs. In experiments, the FAM is demonstrated to be stable enough for practical applications and has the transmission enhancement of over 20 dB for wide frequencies. The transmission enhancement of music signal across the water-air interface was performed to demonstrate the applications in acoustic communications. The FAM will benefit various applications in hydroacoustics and oceanography.

9.
Sci Adv ; 7(34)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34407930

RESUMO

Fluid interfaces are omnipresent in nature. Engineering the fluid interface is essential to study interfacial processes for basic research and industrial applications. However, it remains challenging to precisely control the fluid interface because of its fluidity and instability. Here, we proposed a magnetic-actuated "capillary container" to realize three-dimensional (3D) fluid interface creation and programmable dynamic manipulation. By wettability modification, 3D fluid interfaces with predesigned sizes and geometries can be constructed in air, water, and oils. Multiple motion modes were realized by adjusting the container's structure and magnetic field. Besides, we demonstrated its feasibility in various fluids by performing selective fluid collection and chemical reaction manipulations. The container can also be encapsulated with an interfacial gelation reaction. Using this process, diverse free-standing 3D membranes were produced, and the dynamic release of riboflavin (vitamin B2) was studied. This versatile capillary container will provide a promising platform for open microfluidics, interfacial chemistry, and biomedical engineering.

10.
Micromachines (Basel) ; 12(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34442598

RESUMO

Continuous monitoring of physical motion, which can be successfully achieved via a wireless flexible wearable electronic device, is essential for people to ensure the appropriate level of exercise. Currently, most of the flexible LC pressure sensors have low sensitivity because of the high Young's modulus of the dielectric properties (such as PDMS) and the inflexible polymer films (as the substrate of the sensors), which don't have excellent stretchability to conform to arbitrarily curved and moving surfaces such as joints. In the LC sensing system, the metal rings, as the traditional readout device, are difficult to meet the needs of the portable readout device for the integrated and planar readout antenna. In order to improve the pressure sensitivity of the sensor, the Ecoflex microcolumn used as the dielectric of the capacitive pressure sensor was prepared by using a metal mold copying method. The Ecoflex elastomer substrates enhanced the levels of conformability, which offered improved capabilities to establish intimate contact with the curved and moving surfaces of the skin. The pressure was applied to the sensor by weights, and the resonance frequency curves of the sensor under different pressures were obtained by the readout device connected to the vector network analyzer. The experimental results show that resonant frequency decreases linearly with the increase of applied pressure in a range of 0-23,760 Pa with a high sensitivity of -2.2 MHz/KPa. We designed a coplanar waveguide-fed monopole antenna used to read the information of the LC sensor, which has the potential to be integrated with RF signal processing circuits as a portable readout device and a higher vertical readout distance (up to 4 cm) than the copper ring. The flexible LC pressure sensor can be attached to the skin conformally and is sensitive to limb bending and facial muscle movements. Therefore, it has the potential to be integrated as a body sensor network that can be used to monitor physical motion.

11.
ACS Biomater Sci Eng ; 7(2): 787-793, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33443403

RESUMO

Enzymes, the most commonly used biosensing element, have a great influence on the performance of biosensors. Recently, drop-on-demand (DOD) printing technique has been widely employed for the fabrication of biosensors due to its merits of noncontact, less waste, and rapid deposition. However, enzyme printing studies were rarely conducted on the effect of printing parameters from the aspect of the pressure wave propagation mechanism. This study investigated the effects of pressure wave propagation on enzyme activity from the aspects of wave superposition, wave amplitude, resulting mechanical stress, and protein conformation change using pyruvate oxidase as the model enzyme. We found that the mechanical stress increased the activity of pyruvate oxidase during the inkjet printing process. A shear rate of 3 × 105 s-1 enhanced the activity by 14.10%. The enhancement mechanism was investigated, and the mechanical activation or mild proteolysis was found to change the conformation of pyruvate oxidase and improve its activity. This study is fundamental to understand the effect of both printing mechanism and induced mechanical stress on the properties of biomolecules and plays an important role in modulating the activity of other enzyme-based inks, which is crucial for the development of biosensors.


Assuntos
Técnicas Biossensoriais , Tinta , Impressão Tridimensional
12.
ACS Appl Mater Interfaces ; 12(43): 49073-49079, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32970403

RESUMO

Delicate metal parts with superior electrical, mechanical, and thermal properties have attracted a lot of interest, but it is yet challenging to fabricate. Herein, a strategy of making complex metallic structures is developed in this research through integrating a bioinspired catechol-based initiator, dopamine, as an example, into the three-dimensional (3D) printing process followed by the assistance of surface modification. The wealthy catechol groups growing on the polymer enable the metal coating with a high adhesion stability. A series of complex metallic structures were fabricated, such as Ni-Co, Cu, and Ni Eiffel towers, Ag micro-stretching-dominated architecture, and Au auxetic structure. The introduced metal coating enables the 3D-printed objects with multiple classes of functionalities, such as magnetism or high conductivity. In particular, this method allows in situ repairing of the damaged metallic structures, which not only prolongs the lifespan of products but also solves the long-lasting challenge of repairing 3D printing parts. The detailed fabrication and repairing processes of functional metallic parts are presented and discussed. The proposed strategy has great potential in practical applications related to electronics, energy storage, healthcare, and so on.

13.
ACS Appl Mater Interfaces ; 11(35): 32559-32568, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31411027

RESUMO

Solar desalination of seawater is an attractive and environmentally friendly method to solve the long-standing water crisis. However, its efficiency is highly reliant on solar intensity. Additionally, increasing contamination in water makes it difficult to generate clean water through the solo desalination process. To address this, we propose a polydopamine (PDA)-functionalized hybrid material with dual-purpose solar evaporation and contaminant adsorption for highly efficient clean water production in all-weather conditions. The hybrid material is fabricated by polymerization of dopamine onto a commercial sponge in a facile, low-cost, and scalable manner. With excellent light absorption and chelation capabilities, the PDA film coated on sponge acts as both a photothermal material and adsorbent that allow us to achieve clean water production with solar desalination when sunshine and with contaminant adsorption when cloudy or at night. Meanwhile, the solar evaporation and contaminant adsorption of the PDA-sponge are synergized with one another, resulting in the PDA-sponge that is a desirable material with the capability of continuous clean water production in all-weather conditions. The PDA-sponge is also highly recyclable with a high retention rate of evaporation and adsorption efficiency even after 10 cycles. The promising PDA-based hybrid is believed to inspire new strategies for superior water treatment materials.

14.
Micromachines (Basel) ; 10(7)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337033

RESUMO

This paper presents a novel J band (220-325 GHz) MEMS switch design. The equivalent circuits, the major parameters, capacitance, inductance and resistance in the circuit were extracted and calculated quantitatively to carry out the radio frequency analysis. In addition, the mechanical property of the switch structure is analyzed, and the switching voltage is obtained. With the designed parameters, the MEMS switch is fabricated. The measurement results are in good agreement with simulation results, and the switch is actuated under a voltage of ~30 V. More importantly, the switch has achieved a low insertion loss of ~1.2 dB at 220 GHz and <~4 dB from 220 GHz to 270 GHz in the "UP" state, and isolation of ~16 dB from 220 GHz to 320 GHz in the "DOWN" state. Such switch shows great potential in the integration for terahertz components.

15.
Micromachines (Basel) ; 9(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30424434

RESUMO

Measurement of hemostatic parameters is essential for patients receiving long-term oral anticoagulant agents. In this paper, we present a shear mode bulk acoustic resonator based on an inclined c-axis aluminum nitride (AlN) film for monitoring the human hemostatic parameters. During the blood coagulation process, the resonant frequency of the device decreases along with a step-ladder profile due to the viscosity change during the formation of fibers in blood, revealing the sequential coagulation stages. Two hemostatic parameters with clinical significance, prothrombin time (PT) along with its derived measure of international normalized ratio (INR), are determined from time-frequency curves of the device. Furthermore, the resonator is compared with a commercial coagulometer by monitoring the hemostatic parameters for one month in a patient taking the oral anticoagulant. The results are consistent. In addition, thanks to the excellent potential for integration, miniaturization and the availability of direct digital signals, the proposed device has promising application for point of care coagulation monitoring.

16.
Nanotechnology ; 29(50): 505704, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30229741

RESUMO

Metamaterials with artificially designed architectures can achieve unique and even unprecedented physical properties, which show promising applications in actuators, amplifiers and micromechanical controls. An initiator-integrated 3D printing technology (i3DP) was applied in this study to create scalable, metal/polymer meta-mechanical materials, which can gradually achieve negative Poisson's ratio, high strength and ultralow density, as well as high compressive and super-elastic behavior. The i3DP was enabled by integrating an atomic-transfer radical polymerization (ATRP) initiator with UV-curable resin, followed by polyelectrolyte brushes (PMETAC) grafting via surface-initiated ATRP and thereafter electroless plating to form metal coatings. Compared with polymer structures, the compressive stress of metal-polymer structure can be doubled when deposited with a 190 nm copper layer. The hollow metallic materials possess a tunable Poisson's ratio, and the highest average recoverability, which can recover nearly completely to their original shape after over 30% compression. Overall, this i3DP approach provides meta-structures with substantial benefits from the hierarchical design and fabrication flexibility.

17.
J Nanosci Nanotechnol ; 18(12): 8099-8104, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189925

RESUMO

Frequent monitoring of blood coagulation status is essential for patients receiving treatment with some oral anticoagulant agents. In this paper, we present a microelectromechanical film bulk acoustic resonator for the measurement of blood coagulation parameters. The resonator was made of an aluminum nitride piezoelectric film and operated in thickness shear resonance mode with a frequency of about 2 GHz. The resonant frequency showed a linear relationship with the viscosity of the environmental liquid over the wide range of 1-25 cP, falling within the physiological range of human blood. The coagulation process of human blood was monitored by following the frequency downshift due to the viscosity change. Therefore, the frequency response was used to determine quantitatively three clinically significant parameters being the enzymatic cascade time, the coagulation time and the clot degree. As a practical demonstration, the proposed micro-resonator was applied to monitor coagulation for one month in a patient taking the oral anticoagulant, warfarin, daily. The results measured by the resonator were consistent with those of the standard coagulometer. As a result of the excellent potential for integration, miniaturization and the availability of direct digital signals, the shear mode film bulk acoustic resonator has promising application for clinical and personal coagulation monitoring.


Assuntos
Acústica , Anticoagulantes , Coagulação Sanguínea , Anticoagulantes/farmacologia , Humanos , Miniaturização , Viscosidade
18.
ACS Appl Mater Interfaces ; 10(13): 10998-11007, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29533662

RESUMO

Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m-2 h-1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

19.
Nanotechnology ; 28(45): 455708, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28872049

RESUMO

Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density <10 mg cm-3 and the stable [Formula: see text] scaling through all range of relative density, indicates an advantage over the previous stochastic metal foams. Overall, this initiator-integrated 3D printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.

20.
Biosens Bioelectron ; 91: 465-471, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28068607

RESUMO

Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1µl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R2=0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring.


Assuntos
Acústica/instrumentação , Testes de Coagulação Sanguínea/instrumentação , Coagulação Sanguínea , Sistemas Microeletromecânicos/instrumentação , Técnicas Biossensoriais/instrumentação , Viscosidade Sanguínea , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA