Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
FEBS J ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39308083

RESUMO

Organohalogen compounds exhibit wide-ranging bioactivities and potential applications. Understanding natural biosynthetic pathways and improving the production of halogenated compounds has garnered significant attention. Recently, the biosynthetic pathway of a cyanobacterial neurotoxin, aetokthonotoxin, was reported. It contains two unique enzymes: a single-component flavin-dependent halogenase AetF and a new type of nitril synthase AetD. The crystal structures of these enzymes in complex with their cofactors and substrates that were recently reported will be presented here. The AetF structures reveal a tri-domain architecture, the transfer direction of the hydride ion, a possible path to deliver the hypohalous acid, and the unusual bispecific substrate-recognition mode. The AetD structures demonstrate that the nitrile formation should occur through the action of a diiron cluster, implying that the enzyme should be capable of catalyzing the nitrile formation of alternative amino acids. This information is of central importance for understanding the mechanism of action as well as the applications of these two the-first-of-its-kind enzymes.

2.
Nat Commun ; 15(1): 7682, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227380

RESUMO

The inversion of substrate size specificity is an evolutionary roadblock for proteins. The Duf4243 dioxygenases GedK and BTG13 are known to catalyze the aromatic cleavage of bulky tricyclic hydroquinone. In this study, we discover a Duf4243 dioxygenase PaD that favors small monocyclic hydroquinones from the penicillic-acid biosynthetic pathway. Sequence alignments between PaD and GedK and BTG13 suggest PaD has three additional motifs, namely motifs 1-3, distributed at different positions in the protein sequence. X-ray crystal structures of PaD with the substrate at high resolution show motifs 1-3 determine three loops (loops 1-3). Most intriguing, loops 1-3 stack together at the top of the pocket, creating a lid-like tertiary structure with a narrow channel and a clearly constricted opening. This drastically changes the substrate specificity by determining the entry and binding of much smaller substrates. Further genome mining suggests Duf4243 dioxygenases with motifs 1-3 belong to an evolutionary branch that is extensively involved in the biosynthesis of natural products and has the ability to degrade diverse monocyclic hydroquinone pollutants. This study showcases how natural enzymes alter the substrate specificity fundamentally by incorporating new small motifs, with a fixed overall scaffold-architecture. It will also offer a theoretical foundation for the engineering of substrate specificity in enzymes and act as a guide for the identification of aromatic dioxygenases with distinct substrate specificities.


Assuntos
Motivos de Aminoácidos , Dioxigenases , Especificidade por Substrato , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Cristalografia por Raios X , Hidroquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sequência de Aminoácidos , Modelos Moleculares , Alinhamento de Sequência
3.
Int J Biol Macromol ; 278(Pt 3): 134831, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163957

RESUMO

Ochratoxin A (OTA) contamination in various agro-products poses a serious threat to the global food safety and human health, leading to enormous economic losses. Enzyme-mediated OTA degradation is an appealing strategy, and the search for more efficient enzymes is a prerequisite for achieving this goal. Here, a novel amidohydrolase, termed PwADH, was demonstrated to exhibit 7.3-fold higher activity than that of the most efficient OTA-degrading ADH3 previously reported. Cryo-electron microscopy structure analysis indicated that additional hydrogen-bond interactions among OTA and the adjacent residue H163, the more compact substrate-binding pocket, and the wider entry to the substrate-access cavity might account for the more efficient OTA-degrading activity of PwADH compared with that of ADH3. We conducted a structure-guided rational design of PwADH and obtained an upgraded variant, G88D, whose OTA-degrading activity was elevated by 1.2-fold. In addition, PwADH and the upgraded G88D were successfully expressed in the industrial yeast Pichia pastoris, and their catalytic activities were compared to those of their counterparts produced in E. coli, revealing the feasibility of producing PwADH and its variants in industrial yeast strains. These results illustrate the structural basis of a novel, efficient OTA-degrading amidohydrolase and will be beneficial for the development of high-efficiency OTA-degrading approaches.


Assuntos
Amidoidrolases , Ocratoxinas , Ocratoxinas/metabolismo , Ocratoxinas/química , Amidoidrolases/metabolismo , Amidoidrolases/química , Modelos Moleculares , Relação Estrutura-Atividade , Conformação Proteica , Saccharomycetales
5.
J Agric Food Chem ; 72(32): 18201-18213, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39082219

RESUMO

The drive to enhance enzyme performance in industrial applications frequently clashes with the practical limitations of exhaustive experimental screening, underscoring the urgency for more refined and strategic methodologies in enzyme engineering. In this study, xylanase Xyl-1 was used as the model, coupling evolutionary insights with energy functions to obtain theoretical potential mutants, which were subsequently validated experimentally. We observed that mutations in the nonloop region primarily aimed at enhancing stability and also encountered selective pressure for activity. Notably, mutations in this region simultaneously boosted the Xyl-1 stability and activity, achieving a 65% success rate. Using a greedy strategy, mutant M4 was developed, achieving a 12 °C higher melting temperature and doubled activity. By integration of spectroscopy, crystallography, and quantum mechanics/molecular mechanics molecular dynamics, the mechanism behind the enhanced thermal stability of M4 was elucidated. It was determined that the activity differences between M4 and the wild type were primarily driven by dynamic factors influenced by distal mutations. In conclusion, the study emphasizes the pivotal role of evolution-based approaches in augmenting the stability and activity of the enzymes. It sheds light on the unique adaptive mechanisms employed by various structural regions of proteins and expands our understanding of the intricate relationship between distant mutations and enzyme dynamics.


Assuntos
Endo-1,4-beta-Xilanases , Estabilidade Enzimática , Mutação , Engenharia de Proteínas , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cinética , Evolução Molecular Direcionada
6.
Int J Biol Macromol ; 260(Pt 1): 129312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216020

RESUMO

Flavin-dependent halogenases (FDHs) have tremendous applications in synthetic chemistry. A single-component FDH, AetF, exhibits both halogenase and reductase activities in a continuous polypeptide chain. AetF exhibits broad substrate promiscuity and catalyzes the two-step bromination of l-tryptophan (l-Trp) to produce 5-bromotryptophan (5-Br-Trp) and 5,7-dibromo-l-tryptophan (5,7-di-Br-Trp). To elucidate the mechanism of action of AetF, we solved its crystal structure in complex with FAD, FAD/NADP+, FAD/l-Trp, and FAD/5-Br-Trp at resolutions of 1.92-2.23 Å. The obtained crystal structures depict the unprecedented topology of single-component FDH. Structural analysis revealed that the substrate flexibility and dibromination capability of AetF could be attributed to its spacious substrate-binding pocket. In addition, highly-regulated interaction networks between the substrate-recognizing residues and 5-Br-Trp are crucial for the dibromination activity of AetF. Several Ala variants underwent monobromination with >98 % C5-regioselectivity toward l-Trp. These results reveal the catalytic mechanism of single-component FDH for the first time and contribute to efficient FDH protein engineering for biocatalytic halogenation.


Assuntos
Oxirredutases , Triptofano , Oxirredutases/metabolismo , Triptofano/metabolismo , Halogenação , Compostos Orgânicos , Flavinas/metabolismo
7.
Int J Biol Macromol ; 256(Pt 2): 128428, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013086

RESUMO

Selenoneine (SEN) is a natural histidine derivative with radical-scavenging activity and shows higher antioxidant potential than its sulfur-containing isolog ergothioneine (EGT). Recently, the SEN biosynthetic pathway in Variovorax paradoxus was reported. Resembling EGT biosynthesis, the committed step of SEN synthesis is catalyzed by a nonheme Fe-dependent oxygenase termed SenA. This enzyme catalyzes oxidative carbon­selenium (C-Se) bond formation to conjugate N-α-trimethyl histidine (TMH) and selenosugar to yield selenoxide; the process parallels the EGT biosynthetic route, in which sulfoxide synthases known as EgtB members catalyze the conjugation of TMH and cysteine or γ-glutamylcysteine to afford sulfoxides. Here, we report the crystal structures of SenA and its complex with TMH and thioglucose (SGlc), an analog of selenoglucose (SeGlc) at high resolution. The overall structure of SenA adopts the archetypical fold of EgtB, which comprises a DinB-like domain and an FGE-like domain. While the TMH-binding site is highly conserved to that of EgtB, a various substrate-enzyme interaction network in the selenosugar-binding site of SenA features a number of water-mediated hydrogen bonds. The obtained structural information is beneficial for understanding the mechanism of SenA-mediated C-Se bond formation.


Assuntos
Ergotioneína , Compostos Organosselênicos , Histidina , Ferro , Oxigenases , Ergotioneína/química , Ergotioneína/metabolismo
8.
J Hazard Mater ; 464: 132965, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979420

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT) is among the most widely applied synthetic polyesters that are utilized in the packaging and agricultural industries, but the accumulation of PBAT wastes has posed a great burden to ecosystems. Using renewable enzymes to decompose PBAT is an eco-friendly solution to tackle this problem. Recently, we demonstrated that cutinase is the most effective PBAT-degrading enzyme and that an engineered cutinase termed TfCut-DM could completely decompose PBAT film to terephthalate (TPA). Here, we report crystal structures of a variant of leaf compost cutinase in complex with soluble fragments of PBAT, including BTa and TaBTa. In the TaBTa complex, one TPA moiety was located at a polymer-binding site distal to the catalytic center that has never been experimentally validated. Intriguingly, the composition of the distal TPA-binding site shows higher diversity relative to the one proximal to the catalytic center in various cutinases. We thus modified the distal TPA-binding site of TfCut-DM and obtained variants that exhibit higher activity. Notably, the time needed to completely degrade the PBAT film to TPA was shortened to within 24 h by TfCut-DM Q132Y (5813 mol per mol protein). Taken together, the structural information regarding the substrate-binding behavior of PBAT-degrading enzymes could be useful guidance for direct enzyme engineering.


Assuntos
Ácidos Ftálicos , Polímeros , Polímeros/química , Ecossistema , Poliésteres/química , Ácidos Ftálicos/química
9.
Acta Pharm Sin B ; 13(12): 4963-4982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045063

RESUMO

Endocrine-resistance remains a major challenge in estrogen receptor α positive (ERα+) breast cancer (BC) treatment and constitutively active somatic mutations in ERα are a common mechanism. There is an urgent need to develop novel drugs with new mode of mechanism to fight endocrine-resistance. Given aberrant ERα activity, we herein report the identification of novel covalent selective estrogen receptor degraders (cSERDs) possessing the advantages of both covalent and degradation strategies. A highly potent cSERD 29c was identified with superior anti-proliferative activity than fulvestrant against a panel of ERα+ breast cancer cell lines including mutant ERα. Crystal structure of ERα‒29c complex alongside intact mass spectrometry revealed that 29c disrupted ERα protein homeostasis through covalent targeting C530 and strong hydrophobic interaction collied on H11, thus enforcing a unique antagonist conformation and driving the ERα degradation. These significant effects of the cSERD on ERα homeostasis, unlike typical ERα degraders that occur directly via long side chains perturbing the morphology of H12, demonstrating a distinct mechanism of action (MoA). In vivo, 29c showed potent antitumor activity in MCF-7 tumor xenograft models and low toxicity. This proof-of-principle study verifies that novel cSERDs offering new opportunities for the development of innovative therapies for endocrine-resistant BC.

10.
Nat Commun ; 14(1): 7425, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973794

RESUMO

The biosynthesis of neurotoxin aetokthonotoxin (AETX) that features a unique structure of pentabrominated biindole nitrile involves a first-of-its-kind nitrile synthase termed AetD, an enzyme that shares very low sequence identity to known structures and catalyzes an unprecedented mechanism. In this study, we resolve the crystal structure of AetD in complex with the substrate 5,7-di-Br-L-Trp. AetD adopts the heme oxygenase like fold and forms a hydrophobic cavity within a helical bundle to accommodate the indole moiety. A diiron cluster comprising two irons that serves as a catalytic center binds to the carboxyl O and the amino N of the substrate. Notably, we demonstrate that the AetD-catalyzed reaction is independent of the bromination of the substrate and also solved crystal structures of AetD in complex with 5-Br-L-Trp and L-Trp. Altogether, the present study reveals the substrate-binding pattern and validates the diiron cluster-comprising active center of AetD, which should provide important basis to support the mechanistic investigations into this class of nitrile synthase.


Assuntos
Heme Oxigenase (Desciclizante) , Óxido Nítrico Sintase , Cristalografia por Raios X , Catálise
11.
Nature ; 621(7980): 840-848, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674084

RESUMO

In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.


Assuntos
Butirofilinas , Ativação Linfocitária , Fosfoproteínas , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Animais , Humanos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Butirofilinas/imunologia , Butirofilinas/metabolismo , Camelídeos Americanos/imunologia , Simulação de Dinâmica Molecular , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular , Termodinâmica
12.
Nat Commun ; 14(1): 4001, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414771

RESUMO

Diterpene synthase VenA is responsible for assembling venezuelaene A with a unique 5-5-6-7 tetracyclic skeleton from geranylgeranyl pyrophosphate. VenA also demonstrates substrate promiscuity by accepting geranyl pyrophosphate and farnesyl pyrophosphate as alternative substrates. Herein, we report the crystal structures of VenA in both apo form and holo form in complex with a trinuclear magnesium cluster and pyrophosphate group. Functional and structural investigations on the atypical 115DSFVSD120 motif of VenA, versus the canonical Asp-rich motif of DDXX(X)D/E, reveal that the absent second Asp of canonical motif is functionally replaced by Ser116 and Gln83, together with bioinformatics analysis identifying a hidden subclass of type I microbial terpene synthases. Further structural analysis, multiscale computational simulations, and structure-directed mutagenesis provide significant mechanistic insights into the substrate selectivity and catalytic promiscuity of VenA. Finally, VenA is semi-rationally engineered into a sesterterpene synthase to recognize the larger substrate geranylfarnesyl pyrophosphate.


Assuntos
Alquil e Aril Transferases , Diterpenos , Difosfatos , Alquil e Aril Transferases/genética , Biologia Computacional
13.
J Hazard Mater ; 458: 131836, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331057

RESUMO

Ochratoxin A (OTA) is among the most prevalent mycotoxins detected in agroproducts, posing serious threats to human and livestock health. Using enzymes to conduct OTA detoxification is an appealing potential strategy. The recently identified amidohydrolase from Stenotrophomonas acidaminiphila, termed ADH3, is the most efficient OTA-detoxifying enzyme reported thus far and can hydrolyze OTA to nontoxic ochratoxin α (OTα) and L-ß-phenylalanine (Phe). To elucidate the catalytic mechanism of ADH3, we solved the single-particle cryo-electron microscopy (cryo-EM) structures of apo-form, Phe- and OTA-bound ADH3 to an overall resolution of 2.5-2.7 Å. The role of OTA-binding residues was investigated by structural, mutagenesis and biochemical analyses. We also rationally engineered ADH3 and obtained variant S88E, whose catalytic activity was elevated by 3.7-fold. Structural analysis of variant S88E indicates that the E88 side chain provides additional hydrogen bond interactions to the OTα moiety. Furthermore, the OTA-hydrolytic activity of variant S88E expressed in Pichia pastoris is comparable to that of Escherichia coli-expressed enzyme, revealing the feasibility of employing the industrial yeast strain to produce ADH3 and its variants for further applications. These results unveil a wealth of information about the catalytic mechanism of ADH3-mediated OTA degradation and provide a blueprint for rational engineering of high-efficiency OTA-detoxifying machineries.


Assuntos
Agroquímicos , Amidoidrolases , Recuperação e Remediação Ambiental , Micotoxinas , Micotoxinas/química , Micotoxinas/toxicidade , Recuperação e Remediação Ambiental/métodos
14.
Eur J Med Chem ; 253: 115328, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037140

RESUMO

Drug resistance is a major challenge in conventional endocrine therapy for estrogen receptor (ER) positive breast cancer (BC). BC is a multifactorial disease, in which simultaneous aromatase (ARO) inhibition and ERα degradation may effectively inhibit the signal transduction of both proteins, thus potentially overcoming drug resistance caused by overexpression or mutation of target proteins. In this study, guided by the X-ray structure of a hit compound 30a in complex with ER-Y537S, a structure-based optimization was performed to get a series of multiacting inhibitors targeting both ERα and ARO, and finally a novel class of potent selective estrogen receptor degraders (SERDs) based on a three-dimensional oxabicycloheptene sulfonamide (OBHSA) scaffold equipped with aromatase inhibitor (AI) activity were identified. Of these dual-targeting SERD-AI hybrids, compound 31q incorporating a 1H-1,2,4-triazole moiety showed excellent ERα degradation activity, ARO inhibitory activity and remarkable antiproliferative activity against BC resistant cells. Furthermore, 31q manifested efficient tumor suppression in MCF-7 tumor xenograft models. Taken together, our study reported for the first time the highly efficient dual-targeting SERD-AI hybrid compounds, which may lay the foundation of translational research for improved treatment of endocrine-resistant BC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo
15.
Nat Commun ; 14(1): 1645, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964144

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT), a polyester made of terephthalic acid (TPA), 1,4-butanediol, and adipic acid, is extensively utilized in plastic production and has accumulated globally as environmental waste. Biodegradation is an attractive strategy to manage PBAT, but an effective PBAT-degrading enzyme is required. Here, we demonstrate that cutinases are highly potent enzymes that can completely decompose PBAT films in 48 h. We further show that the engineered cutinases, by applying a double mutation strategy to render a more flexible substrate-binding pocket exhibit higher decomposition rates. Notably, these variants produce TPA as a major end-product, which is beneficial feature for the future recycling economy. The crystal structures of wild type and double mutation of a cutinase from Thermobifida fusca in complex with a substrate analogue are also solved, elucidating their substrate-binding modes. These structural and biochemical analyses enable us to propose the mechanism of cutinase-mediated PBAT degradation.


Assuntos
Adipatos , Poliésteres , Poliésteres/metabolismo
16.
Bioresour Bioprocess ; 10(1): 26, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647782

RESUMO

Using enzymes to hydrolyze and recycle poly(ethylene terephthalate) (PET) is an attractive eco-friendly approach to manage the ever-increasing PET wastes, while one major challenge to realize the commercial application of enzyme-based PET degradation is to establish large-scale production methods to produce PET hydrolytic enzyme. To achieve this goal, we exploited the industrial strain Pichia pastoris to express a PET hydrolytic enzyme from Caldimonas taiwanensis termed CtPL-DM. In contrast to the protein expressed in Escherichia coli, CtPL-DM expressed in P. pastoris is inactive in PET degradation. Structural analysis indicates that a putative N-glycosylation site N181 could restrain the conformational change of a substrate-binding Trp and hamper the enzyme action. We thus constructed N181A to remove the N-glycosylation and found that the PET hydrolytic activity of this variant was restored. The performance of N181A was further enhanced via molecular engineering. These results are of valuable in terms of PET hydrolytic enzyme production in industrial strains in the future.

17.
Int J Biol Macromol ; 222(Pt A): 421-428, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36176222

RESUMO

Patulin is a fatal mycotoxin that is widely detected in drinking water and fruit-derived products contaminated by diverse filamentous fungi. CgSDR from Candida guilliermondii represents the first NADPH-dependent short-chain dehydrogenase/reductase that catalyzes the reduction of patulin to the nontoxic E-ascladiol. To elucidate the catalytic mechanism of CgSDR, we solved its crystal structure in complex with cofactor and substrate. Structural analyses indicate that patulin is situated in a hydrophobic pocket adjacent to the cofactor, with the hemiacetal ring orienting toward the nicotinamide moiety of NADPH. In addition, we conducted structure-guided engineering to modify substrate-binding residue V187 and obtained variant V187F, V187K and V187W, whose catalytic activity was elevated by 3.9-, 2.2- and 1.7-fold, respectively. The crystal structures of CgSDR variants suggest that introducing additional aromatic stacking or hydrogen-bonding interactions to bind the lactone ring of patulin might account for the observed enhanced activity. These results illustrate the catalytic mechanism of SDR-mediated patulin detoxification for the first time and provide the upgraded variants that exhibit tremendous potentials in industrial applications.


Assuntos
Patulina , Redutases-Desidrogenases de Cadeia Curta , Patulina/metabolismo , NADP/metabolismo , Ligação de Hidrogênio
18.
ACS Omega ; 7(26): 22601-22612, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811857

RESUMO

There is interest in the development of drugs to treat fungal infections due to the increasing threat of drug resistance, and here, we report the first crystallographic structure of the catalytic domain of a fungal squalene synthase (SQS), Aspergillus flavus SQS (AfSQS), a potential drug target, together with a bioinformatics study of fungal, human, and protozoal SQSs. Our X-ray results show strong structural similarities between the catalytic domains in these proteins, but, remarkably, using bioinformatics, we find that there is also a large, highly polar helix in the fungal proteins that connects the catalytic and membrane-anchoring transmembrane domains. This polar helix is absent in squalene synthases from all other lifeforms. We show that the transmembrane domain in AfSQS and in other SQSs, stannin, and steryl sulfatase, have very similar properties (% polar residues, hydrophobicity, and hydrophobic moment) to those found in the "penultimate" C-terminal helical domain in squalene epoxidase, while the final C-terminal domain in squalene epoxidase is more polar and may be monotopic. We also propose structural models for full-length AfSQS based on the bioinformatics results as well as a deep learning program that indicate that the C-terminus region may also be membrane surface-associated. Taken together, our results are of general interest given the unique nature of the polar helical domain in fungi that may be involved in protein-protein interactions as well as being a future target for antifungals.

19.
Int J Biol Macromol ; 214: 492-499, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35764165

RESUMO

Isoprenoids represent the largest group of natural products, whose basal skeletons are synthesized by various isoprenyl diphosphate synthases (IDSs). As majority of IDSs catalyze head-to-tail reaction to produce linear form isoprenoids, some catalyze head-to-middle reaction to produce branched form products. In a previous study, an IDS termed MA1831 from Methanosarcina acetivorans was found to be capable of catalyzing both types of reaction. In addition to the canonical linear product of C35 in length, MA1831 also catalyzes head-to-middle condensation of farnesyl diphosphate (FPP) and dimethylallyl diphosphate (DMAPP) to produce geranyllavandulyl diphosphate. In order to investigate the mechanism of action of MA1831, we determined its crystal structures in apo-form and in complex with substrates and analogues. The complex structures that contain isopentenyl S-thiolodiphosphate and DMAPP as homoallylic substrates were also reported, which should represent the reaction modes of MA1831-mediated head-to-tail and head-to-middle reaction, respectively. Based on the structural information, the mechanism of MA1831 catalyze head-to-tail and head-to-middle condensation reaction was proposed.


Assuntos
Alquil e Aril Transferases , Difosfatos , Catálise , Terpenos/química
20.
J Hazard Mater ; 436: 129191, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739721

RESUMO

Glyphosate is a dominant organophosphate herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimate pathway. Glyphosate is extensively applied since manufactured, which has led to the emergence of various glyphosate-resistant crops and weeds. However, the molecular mechanism of many glyphosate-resistance machineries remains unclear. Recently, the upregulated expression of two homologous aldo-keto reductases (AKRs), designated as AKR4C16 and AKR4C17, were found to contribute to the glyphosate resistance in Echinochloa colona. This represents the first naturally evolved glyphosate-degrading machinery reported in plants. Here, we report the three-dimensional structure of these two AKR enzymes in complex with cofactor by performing X-ray crystallography. Furthermore, the binding-mode of glyphosate were elucidated in a ternary complex of AKR4C17. Based on the structural information and the previous study, we proposed a possible mechanism of action of AKR-mediated glyphosate degradation. In addition, a variant F291D of AKR4C17 that was constructed based on structure-based engineering showed a 70% increase in glyphosate degradation. In conclusion, these results demonstrate the structural features and glyphosate-binding mode of AKR4C17, which increases our understanding of the enzymatic mechanism of glyphosate bio-degradation and provides an important basis for the designation of AKR-based glyphosate-resistance for further applications.


Assuntos
Echinochloa , Herbicidas , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Echinochloa/genética , Echinochloa/metabolismo , Glicina/análogos & derivados , Glicina/química , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA