RESUMO
Fruit ripening is a highly complicated process that is accompanied by the formation of fruit quality. In recent years, a series of studies have demonstrated post-transcriptional control play important roles in fruit ripening and fruit quality formation. Till now, the post-transcriptional mechanisms for watermelon fruit ripening have not been comprehensively studied. In this study, we conducted PacBio single-molecule long-read sequencing to identify genome-wide alternative splicing (AS), alternative polyadenylation (APA) and long non-coding RNAs (lncRNAs) in watermelon fruit. In total, 6,921,295 error-corrected and mapped full-length non-chimeric (FLNC) reads were obtained. Notably, more than 42,285 distinct splicing isoforms were derived from 5,891,183 intron-containing full-length FLNC reads, including a large number of AS events associated with fruit ripening. In addition, we characterized 21,506 polyadenylation sites from 11,611 genes, 8703 of which have APA sites. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that fructose and mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were both enriched in genes undergoing AS and APA. These results suggest that post-transcriptional regulation might potentially have a key role in regulation of fruit ripening in watermelon. Taken together, our comprehensive PacBio long-read sequencing results offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of watermelon fruit ripening.
Assuntos
Processamento Alternativo , Citrullus , Citrullus/genética , Citrullus/metabolismo , Poliadenilação , Frutas/genética , Frutas/metabolismo , Splicing de RNA , Regulação da Expressão Gênica de PlantasRESUMO
Watermelon (Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid (ABA) signaling pathway gene ClSnRK2.3 might influence watermelon fruit ripening. However, the molecular mechanisms are unclear. Here, we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator in fruit ripening. Overexpression (OE) of ClSnRK2.3 significantly delayed watermelon fruit ripening and suppressed the accumulation of sucrose, ABA and gibberellin GA4 . Furthermore, we determined that the pyrophosphate-dependent phosphofructokinase (ClPFP1) in sugar metabolism pathway and GA biosynthesis enzyme GA20 oxidase (ClGA20ox) could be phosphorylated by ClSnRK2.3 and thereby resulting in accelerated protein degradation in OE lines and finally led to low levels of sucrose and GA4 . Besides that, ClSnRK2.3 phosphorylated homeodomain-leucine zipper protein (ClHAT1) and protected it from degradation to suppress the expression of the ABA biosynthesis gene 9'-cis-epoxycarotenoid dioxygenase 3 (ClNCED3). These results indicated that ClSnRK2.3 negatively regulated watermelon fruit ripening by manipulating the biosynthesis of sucrose, ABA and GA4 . Altogether, these findings revealed a novel regulatory mechanism in non-climacteric fruit development and ripening.
Assuntos
Citrullus , Frutas , Frutas/metabolismo , Açúcares/metabolismo , Citrullus/genética , Citrullus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Ácido Abscísico/metabolismoRESUMO
The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.
Assuntos
Cucurbitaceae , Genoma de Planta , Genômica , Sintenia , Cucurbitaceae/genética , Bases de Dados Factuais , Bases de Dados GenéticasRESUMO
Ubiquitination-mediated protein degradation plays important roles in ABA signal transduction and delivering responses to chloroplast stress signals in plants, but additional E3 ligases of protein ubiquitination remain to be identified to understand the complex signaling network. Here we reported that ZEITLUPE (ZTL), an F-box protein, negatively regulates abscisic acid (ABA) signaling during ABA-inhibited early seedling growth and ABA-induced stomatal closure in Arabidopsis thaliana. Using molecular biology and biochemistry approaches, we demonstrated that ZTL interacts with and ubiquitinates its substrate, CHLH/ABAR (Mg-chelatase H subunit/putative ABA receptor), to modulate CHLH stability via the 26S proteasome pathway. CHLH acts genetically downstream of ZTL in ABA and drought stress signaling. Interestingly, ABA conversely induces ZTL phosphorylation, and high levels of ABA also induce CHLH proteasomal degradation, implying that phosphorylated ZTL protein may enhance the affinity to CHLH, leading to the increased degradation of CHLH after ABA treatment. Taken together, our results revealed a possible mechanism of reciprocal regulation between ABA signaling and the circadian clock, which is thought to be essential for plant fitness and survival.
RESUMO
The NAC transcription factor NONRIPENING (NOR) is a master regulator of climacteric fruit ripening. Melon (Cucumis melo L.) has climacteric and non-climacteric fruit ripening varieties and is an ideal model to study fruit ripening. Two natural CmNAC-NOR variants, the climacteric haplotype CmNAC-NORS,N and the non-climacteric haplotype CmNAC-NORA,S , have effects on fruit ripening; however, their regulatory mechanisms have not been elucidated. Here, we report that a natural mutation in the transcriptional activation domain of CmNAC-NORS,N contributes to climacteric melon fruit ripening. CmNAC-NOR knockout in the climacteric-type melon cultivar "BYJH" completely inhibited fruit ripening, while ripening was delayed by 5-8 d in heterozygous cmnac-nor mutant fruits. CmNAC-NOR directly activated carotenoid, ethylene, and abscisic acid biosynthetic genes to promote fruit coloration and ripening. Furthermore, CmNAC-NOR mediated the transcription of the "CmNAC-NOR-CmNAC73-CmCWINV2" module to enhance flesh sweetness. The transcriptional activation activity of the climacteric haplotype CmNAC-NORS,N on these target genes was significantly higher than that of the non-climacteric haplotype CmNAC-NORA,S . Moreover, CmNAC-NORS,N complementation fully rescued the non-ripening phenotype of the tomato (Solanum lycopersicum) cr-nor mutant, while CmNAC-NORA,S did not. Our results provide insight into the molecular mechanism of climacteric and non-climacteric fruit ripening in melon.
Assuntos
Cucumis melo , Cucurbitaceae , Solanum lycopersicum , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Fruit ripening is a highly complicated process, which is modulated by phytohormones, signal regulators and environmental factors playing in an intricate network that regulates ripening-related genes expression. Although transcriptomics is an effective tool to predict protein levels, protein abundances are also extensively affected by post-transcriptional and post-translational regulations. Here, we used RNA sequencing (RNA-seq) and tandem mass tag (TMT)-based quantitative proteomics to study the comprehensive mRNA and protein expression changes during fruit development and ripening in watermelon, a non-climacteric fruit. A total of 6,226 proteins were quantified, and the large number of quantitative proteins is comparable to proteomic studies in model organisms such as Oryza sativa L. and Arabidopsis. Base on our proteome methodology, integrative analysis of the transcriptome and proteome showed that the mRNA and protein levels were poorly correlated, and the correlation coefficients decreased during fruit ripening. Proteomic results showed that proteins involved in alternative splicing and the ubiquitin proteasome pathway were dynamically expressed during ripening. Furthermore, the spliceosome and proteasome were significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, suggesting that post-transcriptional and post-translational mechanisms might play important roles in regulation of fruit ripening-associated genes expression, which might account for the poor correlation between mRNAs and proteins during fruit ripening. Our comprehensive transcriptomic and proteomic data offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of fruit ripening.
RESUMO
KEY MESSAGE: The mutation of ClZISO identified in EMS-induced watermelon leads to photosensitive flesh in watermelon. Watermelon (Citrullus lanatus) has a colorful flesh that attracts consumers and benefits human health. We developed an ethyl-methanesulfonate mutation library in red-fleshed line '302' to create new flesh color lines and found a yellow-fleshed mutant which accumulated ζ-carotene. The initial yellow color of this mutant can be photobleached within 10 min under intense sunlight. A long-term light-emitting diode (LED) light treatment turned flesh color from yellow to pink. We identified this unique variation as photosensitive flesh mutant ('psf'). Using bulked segregant analysis, we fine-mapped an EMS-induced G-A transversion in 'psf' which leads to a premature stop codon in 15-cis-ζ-carotene isomerase (ClZISO) gene. We detected that wild-type ClZISO is expressed in chromoplasts to catalyze the conversion of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene. The truncated ClZISOmu protein in psf lost this catalytic function. Light treatment can partially compensate ClZISOmu isomerase activity via photoisomerization in vitro and in vivo. Transcriptome analysis showed that most carotenoid biosynthesis genes in psf were downregulated. The dramatic increase of ABA content in flesh with fruit development was blocked in psf. This study explores the molecular mechanism of carotenoid biosynthesis in watermelon and provides a theoretical and technical basis for breeding different flesh color lines in watermelon.
Assuntos
Citrullus , Carotenoides/metabolismo , Frutas , Humanos , Isomerases/genética , Isomerases/metabolismo , Mutação , Pigmentação/genética , Melhoramento Vegetal , zeta Caroteno/metabolismoRESUMO
Carotenoid pigments confer photoprotection and visual attraction and serve as precursors for many important signaling molecules. Herein, the orange-fruited phenotype of a tomato elite inbred line resulting from sharply reduced carotenoid levels and an increased ß-carotene-to-lycopene ratio in fruit was shown to be controlled by a single recessive gene, oft3. BSA-Seq combined with fine mapping delimited the oft3 gene to a 71.23 kb interval on chromosome 4, including eight genes. Finally, the oft3 candidate gene SlIDI1, harboring a 116 bp deletion mutation, was identified by genome sequence analysis. Further functional complementation and CRISPR-Cas9 knockout experiments confirmed that SlIDI1 was the gene underlying the oft3 locus. qRT-PCR analysis revealed that the expression of SlIDI1 was highest in flowers and fruit and increased with fruit ripening or flower maturation. SlIDI1 simultaneously produced long and short transcripts by alternative transcription initiation and alternative splicing. Green fluorescent protein fusion expression revealed that the long isoform was mainly localized in plastids and that an N-terminal 59-amino acid extension sequence was responsible for plastid targeting. Short transcripts were identified in leaves and fruit by 5' RACE and in fruit by 3' RACE, which produced corresponding proteins lacking transit peptides and/or putative peroxisome targeting sequences, respectively. In SlIDI1 mutant fruit, SlBCH1 transcription involved in ß-carotenoid catabolism was obviously suppressed, which may be responsible for the higher ß-carotene-to-lycopene ratio and suggested potential feedback regulatory mechanisms involved in carotenoid pathway flux.
RESUMO
The Cucurbitaceae is one of the most genetically diverse plant families in the world. Many of them are important vegetables or medicinal plants and are widely distributed worldwide. The rapid development of sequencing technologies and bioinformatic algorithms has enabled the generation of genome sequences of numerous important Cucurbitaceae species. This has greatly facilitated research on gene identification, genome evolution, genetic variation and molecular breeding of cucurbit crops. So far, genome sequences of 18 different cucurbit species belonging to tribes Benincaseae, Cucurbiteae, Sicyoeae, Momordiceae and Siraitieae have been deciphered. This review summarizes the genome sequence information, evolutionary relationship, and functional genes associated with important agronomic traits (e.g., fruit quality). The progress of molecular breeding in cucurbit crops and prospects for future applications of Cucurbitaceae genome information are also discussed.
RESUMO
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in fruit ripening and quality. The watermelon genome encodes 80 NAC genes, and 21 of these NAC genes are highly expressed in both the flesh and vascular tissues. Among these genes, ClNAC68 expression was significantly higher in flesh than in rind. However, the intrinsic regulatory mechanism of ClNAC68 in fruit ripening and quality is still unknown. In this study, we found that ClNAC68 is a transcriptional repressor and that the repression domain is located in the C-terminus. Knockout of ClNAC68 by the CRISPR-Cas9 system decreased the soluble solid content and sucrose accumulation in mutant flesh. Development was delayed, germination was inhibited, and the IAA content was significantly decreased in mutant seeds. Transcriptome analysis showed that the invertase gene ClINV was the only gene involved in sucrose metabolism that was upregulated in mutant flesh, and expression of the indole-3-acetic acid-amido synthetase gene ClGH3.6 in the IAA signaling pathway was also induced in mutant seeds. EMSA and dual-luciferase assays showed that ClNAC68 directly bound to the promoters of ClINV and ClGH3.6 to repress their expression. These results indicated that ClNAC68 positively regulated sugar and IAA accumulation by repressing ClINV and ClGH3.6. Our findings provide new insights into the regulatory mechanisms by which NAC transcription factors affect fruit quality and seed development.
RESUMO
Abscisic acid (ABA) is a critical regulator of seed development and germination. ß-glucosidases (BGs) have been suggested to be contributors to increased ABA content because they catalyze the hydrolysis of ABA-glucose ester to release free ABA. However, whether BGs are involved in seed development is unclear. In this study, a candidate gene, ClBG1, in watermelon was selected for targeted mutagenesis via the CRISPR/Cas9 system. Seed size and weight were significantly reduced in the Clbg1-mutant watermelon lines, which was mainly attributed to decreased cell number resulting from decreased ABA levels. A transcriptome analysis showed that the expression of 1015 and 1429 unique genes was changed 10 and 18 days after pollination (DAP), respectively. Cytoskeleton- and cell cycle-related genes were enriched in the differentially expressed genes of wild type and Clbg1-mutant lines during seed development. Moreover, the expression of genes in the major signaling pathways of seed size control was also changed. In addition, seed germination was promoted in the Clbg1-mutant lines due to decreased ABA content. These results indicate that ClBG1 may be critical for watermelon seed size regulation and germination mainly through the modulation of ABA content and thereby the transcriptional regulation of cytoskeleton-, cell cycle- and signaling-related genes. Our results lay a foundation for dissecting the molecular mechanisms of controlling watermelon seed size, a key agricultural trait of significant economic importance.
RESUMO
Grafting cultivation is implemented worldwide mainly to resist abiotic and biotic stresses and is an effective method to improve watermelon production. However, grafting may affect fruit development and quality. In our experiment, pumpkin-grafted (PG) watermelon fruits developed slower and the ripening period was extended compared to self-grafted (SG) fruits. We found that the concentrations of abscisic acid (ABA) among endogenous phytohormones were dramatically reduced by pumpkin grafting. In order to understand these changes at the gene expression level, we performed a comprehensive analysis of the fruit flesh transcriptomes between PG and SG during fruit development and ripening. A total of 1,675 and 4,102 differentially expressed genes (DEGs) were identified between PG and SG. Further functional enrichment analysis revealed that these DEGs were associated with carbohydrate biosynthesis, phytohormone signaling transmission, and cell wall metabolism categories. ABA centric phytohormone signaling and fruit quality-related genes including ABA receptor, PP2C proteins, AP2-EREBP transcription factors, sucrose transporter, and carotenoid isomerase were co-expressed with fruit ripening. These results provide the valuable resource for understanding the mechanism of pumpkin grafting effect on watermelon fruit ripening and quality development.
RESUMO
How raffinose (Raf) family oligosaccharides, the major translocated sugars in the vascular bundle in cucurbits, are hydrolyzed and subsequently partitioned has not been fully elucidated. By performing reciprocal grafting of watermelon (Citrullus lanatus) fruits to branch stems, we observed that Raf was hydrolyzed in the fruit of cultivar watermelons but was backlogged in the fruit of wild ancestor species. Through a genome-wide association study, the alkaline alpha-galactosidase ClAGA2 was identified as the key factor controlling stachyose and Raf hydrolysis, and it was determined to be specifically expressed in the vascular bundle. Analysis of transgenic plants confirmed that ClAGA2 controls fruit Raf hydrolysis and reduces sugar content in fruits. Two single-nucleotide polymorphisms (SNPs) within the ClAGA2 promoter affect the recruitment of the transcription factor ClNF-YC2 (nuclear transcription factor Y subunit C) to regulate ClAGA2 expression. Moreover, this study demonstrates that C. lanatus Sugars Will Eventually Be Exported Transporter 3 (ClSWEET3) and Tonoplast Sugar Transporter (ClTST2) participate in plasma membrane sugar transport and sugar storage in fruit cell vacuoles, respectively. Knocking out ClAGA2, ClSWEET3, and ClTST2 affected fruit sugar accumulation. Genomic signatures indicate that the selection of ClAGA2, ClSWEET3, and ClTST2 for carbohydrate partitioning led to the derivation of modern sweet watermelon from non-sweet ancestors during domestication.
Assuntos
Evolução Biológica , Citrullus/metabolismo , Frutas/metabolismo , Oligossacarídeos/metabolismo , Açúcares/metabolismo , Alelos , Sequência de Bases , Transporte Biológico , Membrana Celular/metabolismo , Citrullus/genética , Regulação da Expressão Gênica de Plantas , Hexoses/metabolismo , Hidrólise , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Unloading sugar from sink phloem by transporters is complex and much remains to be understood about this phenomenon in the watermelon fruit. Here, we report a novel vacuolar sugar transporter (ClVST1) identified through map-based cloning and association study, whose expression in fruit phloem is associated with accumulation of sucrose (Suc) in watermelon fruit. ClVST197 knockout lines show decreased sugar content and total biomass, whereas overexpression of ClVST197 increases Suc content. Population genomic and subcellular localization analyses strongly suggest a single-base change at the coding region of ClVST197 as a major molecular event during watermelon domestication, which results in the truncation of 45 amino acids and shifts the localization of ClVST197 to plasma membranes in sweet watermelons. Molecular, biochemical and phenotypic analyses indicate that ClVST197 is a novel sugar transporter for Suc and glucose efflux and unloading. Functional characterization of ClVST1 provides a novel strategy to increase sugar sink potency during watermelon domestication.
Assuntos
Citrullus , Floema , Transporte Biológico , Citrullus/genética , Floema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , AçúcaresRESUMO
Red-fleshed watermelons (Citrullus lanatus) that accumulate lycopene in their flesh cells have been selected and domesticated from their pale-fleshed ancestors. However, the molecular basis of this trait remains poorly understood. Using map-based cloning and transgenic analysis, we identified a lycopene ß-cyclase (ClLCYB) gene that controls the flesh color of watermelon. Down-regulation of ClLCYB caused the flesh color to change from pale yellow to red, and ClLCYB overexpression in the red-fleshed line caused the flesh color to change to orange. Analysis of ClLCYB single-nucleotide polymorphisms using 211 watermelon accessions with different flesh colors revealed that two missense mutations between three haplotypes (ClLCYB red , ClLCYB white , and ClLCYB yellow ) were selected and largely fixed in domesticated watermelon. Proteins derived from these three ClLCYB haplotypes were localized in plastids to catalyze the conversion of lycopene to ß-carotene and showed similar catalytic abilities. We revealed that ClLCYB protein abundance, instead of ClLCYB transcript level, was negatively correlated with lycopene accumulation. Different amounts of ClLCYB protein degradation among the ClLCYB haplotypes were found in ClLCYB transgenic Arabidopsis (Arabidopsis thaliana) lines. After treatment with the proteasome inhibitor MG132, the concentration of ClLCYBred increased noticeably compared with other ClLCYB proteins. These results indicate that natural missense mutations within ClLCYB influence ClLCYB protein abundance and have contributed to the development of red flesh color in domesticated watermelon.
Assuntos
Citrullus/enzimologia , Domesticação , Liases Intramoleculares/metabolismo , Pigmentação , Proteínas de Plantas/metabolismo , Biocatálise , Carotenoides/metabolismo , Segregação de Cromossomos , Citrullus/genética , Cruzamentos Genéticos , Frutas/metabolismo , Genes de Plantas , Haplótipos/genética , Liases Intramoleculares/genética , Cinética , Fenótipo , Filogenia , Pigmentação/genética , Plantas Geneticamente Modificadas , Proteólise , Seleção Genética , Frações Subcelulares/metabolismoRESUMO
To understand sex determination in watermelon (Citrullus lanatus), a spontaneous gynoecious watermelon mutant, XHBGM, was selected from the monoecious wild type XHB. Using map-based cloning, resequencing and fluorescence in situ hybridization analysis, a unique chromosome translocation between chromosome 2 and chromosome 3 was found in XHBGM. Based on the breakpoint location in chromosome 2, a putative C2H2 zinc finger transcription factor gene, ClWIP1 (gene ID Cla008537), an orthologue of the melon gynoecy gene CmWIP1, was disrupted. Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system 9 to edit ClWIP1, we obtained gynoecious watermelon lines. Functional studies showed that ClWIP1 is expressed specifically in carpel primordia and is related to the abortion of carpel primordia in early floral development. To identify the cellular and metabolic processes associated with ClWIP1, we compared the shoot apex transcriptomes of two gynoecious mutants and their corresponding wild types. Transcriptome analysis showed that differentially expressed genes related to the ethylene and cytokinin pathways were upregulated in the gynoecious mutants. This study explores the molecular mechanism of sex determination in watermelon and provides a theoretical and technical basis for breeding elite gynoecious watermelon lines.
Assuntos
Cromossomos de Plantas , Citrullus/genética , Citrullus/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Translocação Genética , Dedos de Zinco CYS2-HIS2 , Cucurbitaceae , Etilenos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hibridização in Situ Fluorescente , Mutagênese , Brotos de Planta , Fatores de Transcrição/genética , TranscriptomaRESUMO
Fruit characteristics of sweet watermelon are largely the result of human selection. Here we report an improved watermelon reference genome and whole-genome resequencing of 414 accessions representing all extant species in the Citrullus genus. Population genomic analyses reveal the evolutionary history of Citrullus, suggesting independent evolutions in Citrullus amarus and the lineage containing Citrullus lanatus and Citrullus mucosospermus. Our findings indicate that different loci affecting watermelon fruit size have been under selection during speciation, domestication and improvement. A non-bitter allele, arising in the progenitor of sweet watermelon, is largely fixed in C. lanatus. Selection for flesh sweetness started in the progenitor of C. lanatus and continues through modern breeding on loci controlling raffinose catabolism and sugar transport. Fruit flesh coloration and sugar accumulation might have co-evolved through shared genetic components including a sugar transporter gene. This study provides valuable genomic resources and sheds light on watermelon speciation and breeding history.