Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; : 104281, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009207

RESUMO

Gliomas of the brain are characterised by high aggressiveness, high postoperative recurrence rate, high morbidity and mortality, posing a great challenge to clinical treatment. Traditional treatments include surgery, radiotherapy and chemotherapy; they also have significant associated side effects, leading to difficulties in tumour resection and recurrence. Photodynamic therapy has been shown to be a promising new strategy to help treat malignant tumours of the brain. It irradiates the tumour site at a specific wavelength to activate a photosensitiser, which selectively accumulates at the tumour site, triggering a photochemical reaction that destroys the tumour cells. It has the advantages of being minimally invasive, highly targeted and with few adverse reactions, and is expected to be well used in anti-tumour therapy. However, the therapeutic effect of traditional PDT is limited by the weak tissue penetration ability of photosensitiser, hypoxia and immunosuppression in the tumour microenvironment. This paper reviews the current research status on the therapeutic principle of photodynamic therapy in glioma and the mechanism of tumour cell injury, and also analyses the advantages and disadvantages of the current application in glioma treatment, and clarifies the analysis of ideas to improve the tissue penetration ability of photosensitizers. It aims to provide a feasible direction for the improvement of photodynamic therapy for glioma and a reference for the clinical treatment of deep brain tumours.

2.
Front Genet ; 13: 1046008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685974

RESUMO

Background: Among central nervous system tumors, glioblastoma (GBM) is considered to be the most destructive malignancy. Recurrence is one of the most fatal aspects of GBM. However, the driver molecules that trigger GBM recurrence are currently unclear. Methods: The mRNA expression data and clinical information of GBM and normal tissues were collected from the Chinese Glioma Genome Atlas The Cancer Genome Atlas (TCGA), and REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT) cohorts. The DESeq2 R package was used to identify the differentially expressed genes between primary and recurrent GBM. ClueGO, Kyoto Encyclopedia of Genes and Genomes (KEGG), Biological Process in Gene ontology (GO-BP), and the Protein ANalysis THrough Evolutionary Relationships (PANTHER) pathway analyses were performed to explore the enriched signaling pathways in upregulated DEGs in recurrent GBM. A gene list that contained potential oncogenes that showed a significant negative correlation with patient survival from The Cancer Genome Atlas was used to further screen driver candidates for recurrent GBM. Univariate Cox proportional hazards regression analyses were used to investigate the risk score for the mRNA expression of the candidates. Single-cell RNA sequencing (scRNA-Seq) analyses were used to determine the cell type-specific distribution of Fc gamma receptor II b (FcγRIIb) in GBM. Immunohistochemistry (IHC) was used to confirm the FcγRIIb-positive cell populations in primary and paired recurrent GBM. Results: Through DEG analysis and overlap analysis, a total of 10 genes that are upregulated in recurrent GBM were screened. Using validation databases, FcγRIIb was identified from the 10 candidates that may serve as a driver for recurrent GBM. FCGR2B expression, not mutation, further showed a highly negative correlation with the poor prognosis of patients with recurrent GBM. Furthermore, scRNA-Seq analyses revealed that tumor-associated macrophage- and dendritic cell-specific FCGR2B was expressed. Moreover, FcγRIIb also showed a strong positive correlation coefficient with major immune-associated signaling pathways. In clinical specimens, FcγRIIb-positive cell populations were higher in recurrent GBM than in primary GBM. Conclusion: This study provides novel insights into the role of FcγRIIb in recurrent GBM and a promising strategy for treatment as an immune therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA