Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083298

RESUMO

Rice grain number is a crucial agronomic trait impacting yield. In this study, we characterized a quantitative trait locus (QTL), GRAIN NUMBER 1.1 (GN1.1), which encodes a Flowering Locus T-like1 (FT-L1) protein and acts as a negative regulator of grain number in rice. The elite allele GN1.1B, derived from the Oryza indica variety, BF3-104, exhibits a 14.6% increase in grain yield compared with the O. japonica variety, Nipponbare, based on plot yield tests. We demonstrated that GN1.1 interacted with and enhanced the stability of ADP-ribosylation factor (Arf)-GTPase-activating protein (Gap), OsZAC. Loss of function of OsZAC results in increased grain number. Based on our data, we propose that GN1.1B facilitates the elevation of auxin content in young rice panicles by affecting polar auxin transport (PAT) through interaction with OsZAC. Our study unveils the pivotal role of the GN1.1 locus in rice panicle development and presents a novel, promising allele for enhancing rice grain yield through genetic improvement.

2.
Nat Commun ; 15(1): 996, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307858

RESUMO

Postzygotic reproductive isolation, which results in the irreversible divergence of species, is commonly accompanied by hybrid sterility, necrosis/weakness, or lethality in the F1 or other offspring generations. Here we show that the loss of function of HWS1 and HWS2, a couple of duplicated paralogs, together confer complete interspecific incompatibility between Asian and African rice. Both of these non-Mendelian determinants encode the putative Esa1-associated factor 6 (EAF6) protein, which functions as a characteristic subunit of the histone H4 acetyltransferase complex regulating transcriptional activation via genome-wide histone modification. The proliferating tapetum and inappropriate polar nuclei arrangement cause defective pollen and seeds in F2 hybrid offspring due to the recombinant HWS1/2-mediated misregulation of vitamin (biotin and thiamine) metabolism and lipid synthesis. Evolutionary analysis of HWS1/2 suggests that this gene pair has undergone incomplete lineage sorting (ILS) and multiple gene duplication events during speciation. Our findings have not only uncovered a pair of speciation genes that control hybrid breakdown but also illustrate a passive mechanism that could be scaled up and used in the guidance and optimization of hybrid breeding applications for distant hybridization.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Reprodução , Evolução Biológica , Hibridização Genética
3.
Nat Commun ; 14(1): 1640, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964129

RESUMO

Rice panicle architecture determines the grain number per panicle and therefore impacts grain yield. The OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle architecture by regulating cytokinin metabolism. However, the specific upstream ligands perceived by the OsER1 receptor are unknown. Here, we report that the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) small secreted peptide family members OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 synergistically contribute to rice panicle morphogenesis by recognizing the OsER1 receptor and activating the mitogen-activated protein kinase cascade. Notably, OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 negatively regulate spikelet number per panicle, but OsEPFL8 also controls rice spikelet fertility. A osepfl6 osepfl7 osepfl9 triple mutant had significantly enhanced grain yield without affecting spikelet fertility, suggesting that specifically suppressing the OsEPFL6-OsER1, OsEPFL7-OsER1, and OsEPFL9-OsER1 ligand-receptor pairs can optimize rice panicle architecture. These findings provide a framework for fundamental understanding of the role of ligand-receptor signaling in rice panicle development and demonstrate a potential method to overcome the trade-off between spikelet number and fertility.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Ligantes , Grão Comestível/metabolismo , Transporte Biológico
4.
Science ; 376(6599): 1293-1300, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709289

RESUMO

How the plasma membrane senses external heat-stress signals to communicate with chloroplasts to orchestrate thermotolerance remains elusive. We identified a quantitative trait locus, Thermo-tolerance 3 (TT3), consisting of two genes, TT3.1 and TT3.2, that interact together to enhance rice thermotolerance and reduce grain-yield losses caused by heat stress. Upon heat stress, plasma membrane-localized E3 ligase TT3.1 translocates to the endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation, implying that TT3.1 might serve as a potential thermosensor. Lesser accumulated, mature TT3.2 proteins in chloroplasts are essential for protecting thylakoids from heat stress. Our findings not only reveal a TT3.1-TT3.2 genetic module at one locus that transduces heat signals from plasma membrane to chloroplasts but also provide the strategy for breeding highly thermotolerant crops.


Assuntos
Cloroplastos , Oryza , Proteínas de Plantas , Locos de Características Quantitativas , Termotolerância , Cloroplastos/genética , Cloroplastos/fisiologia , Genes de Plantas , Oryza/genética , Oryza/fisiologia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Termotolerância/genética
5.
Commun Biol ; 4(1): 1171, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620988

RESUMO

Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Flavonoides/metabolismo , Lignina/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Oryza/genética , Proteínas de Plantas/genética , Análise do Fluxo Metabólico , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA