RESUMO
Changes in diet causing ecological stress pose a significant challenge to animal survival. In response, the gut microbiota, a crucial part of the host's digestive system, exhibits patterns of change reflective of alterations in the host's food component. The impact of temporal dietary shifts on gut microbiota has been elucidated through multidimensional modeling of both food component and macronutrient intake. However, the broad distribution of wild generalist and the intricate complexity of their food component hinder our capacity to ascertain the degree to which their gut microbiota assist in adapting to spatial dietary variations. We examined variation in patterns of the gut microbial community according to changes in diet and in a colobine monkey with a regional variable diet, the golden snub-nosed monkey (Rhinopithecus roxellana). Specifically, we analyse the interactions between variation in food component, macronutrient intake and the gut microbial community. We compared monkeys from four populations by quantifying food component and macronutrient intake, and by sequencing 16S rRNA and the microbial macro-genomes from the faecal samples of 44 individuals. We found significant differences in the diets and gut microbial compositions, in nutrient space and macronutrient intake among some populations. Variations in gut microbiota composition across distinct populations mirror the disparities in macronutrient intake, with a notable emphasis on carbohydrate. Geographical differences in the diet among of golden snub-nosed monkey populations will result in macronutrient intake variation, with corresponding differences in macronutrient intake driving regional differences in the compositions and abundances of gut microbiota. Importantly, the gut microbiota associated with core digestive functions does not vary, with the non-core gut microbiota fluctuating in response to variation in macronutrient intake. This characteristic may enable species heavily reliant on gut microbiota for digestion to adapt to diet changes. Our results further the understanding of the roles gut microbiota play in the formation of host dietary niches.
RESUMO
Using unmanned aerial vehicles (UAVs) for surveys on thermostatic animals has gained prominence due to their ability to provide practical and precise dynamic censuses, contributing to developing and refining conservation strategies. However, the practical application of UAVs for animal monitoring necessitates the automation of image interpretation to enhance their effectiveness. Based on our past experiences, we present the Sichuan snub-nosed monkey (Rhinopithecus roxellana) as a case study to illustrate the effective use of thermal cameras mounted on UAVs for monitoring monkey populations in Qinling, a region characterized by magnificent biodiversity. We used the local contrast method for a small infrared target detection algorithm to collect the total population size. Through the experimental group, we determined the average optimal grayscale threshold, while the validation group confirmed that this threshold enables automatic detection and counting of target animals in similar datasets. The precision rate obtained from the experiments ranged from 85.14% to 97.60%. Our findings reveal a negative correlation between the minimum average distance between thermal spots and the count of detected individuals, indicating higher interference in images with closer thermal spots. We propose a formula for adjusting primate population estimates based on detection rates obtained from UAV surveys. Our results demonstrate the practical application of UAV-based thermal imagery and automated detection algorithms for primate monitoring, albeit with consideration of environmental factors and the need for data preprocessing. This study contributes to advancing the application of UAV technology in wildlife monitoring, with implications for conservation management and research.
RESUMO
Oxygen evolution reaction (OER) is the efficiency limiting half-reaction in water electrolysis for green hydrogen production due to the 4-electron multistep process with sluggish kinetics. The electrooxidation of thermodynamically more favorable organics accompanied by CC coupling is a promising way to synthesize value-added chemicals instead of OER. Efficient catalyst is of paramount importance to fulfill such a goal. Herein, a molybdenum iron carbide-copper hybrid (Mo2C-FeCu) was designed as anodic catalyst, which demonstrated decent OER catalytic capability with low overpotential of 238 mV at response current density of 10 mA cm-2 and fine stability. More importantly, the Mo2C-FeCu enabled electrooxidation assisted aldol condensation of phenylcarbinol with α-H containing alcohol/ketone in weak alkali electrolyte to selective synthesize cinnamaldehyde/benzalacetone at reduced potential. The hydroxyl and superoxide intermediate radicals generated at high potential are deemed to be responsible for the electrooxidation of phenylcarbinol and aldol condensation reactions to afford cinnamaldehyde/benzalacetone. The current work showcases an electrochemical-chemical combined CC coupling reaction to prepare organic chemicals, we believe more widespread organics can be synthesized by tailored electrochemical reactions.
RESUMO
Microplastics (MPs) and heavy metals (HMs) are important pollutants in terrestrial ecosystems. In particular, the "island" landscape's weak resistance makes it vulnerable to pollution. However, there is a lack of research on MPs and HMs in island landscapes. Therefore, we used Helan Mountain as the research area. Assess the concentrations, spatial distribution, ecological risks, sources, and transport of MPs and HMs in the soil and blue sheep (Pseudois nayaur) feces. Variations in geographical distribution showed a connection between human activity and pollutants. Risk assessment indicated soil and wildlife were influenced by long-term pollutant polarization and multi-element inclusion (Igeo, Class I; PHI, Class V; RI (MPs), 33 % Class II, and 17 % Class IV; HI = 452.08). Source apportionment showed that tourism and coal combustion were the primary sources of pollutants. Meanwhile, a new coupling model of PMF/Risk was applied to quantify the source contribution of various risk types indicated transportation roads and tourism sources were the main sources of ecological and health risks, respectively. Improve the traceability of pollution source risks. Furthermore, also developed a novel tracing model for pollutant transportation, revealing a unique "source-sink-source" cycle in pollutant transportation, which provides a new methodological framework for the division of pollution risk areas in nature reserves and the evaluation of spatial transport between sources and sinks. Overall, this study establishes a foundational framework for conducting comprehensive risk assessments and formulating strategies for pollution control and management.
Assuntos
Ecossistema , Monitoramento Ambiental , Fezes , Metais Pesados , Microplásticos , Microplásticos/análise , Metais Pesados/análise , Animais , Medição de Risco , Fezes/química , Poluentes do Solo/análise , Ovinos , ChinaRESUMO
The emergence of 5G technology has enabled the development of Metaverse applications that provide users with immersive experiences through augmented reality (AR) devices, and the integration of federated learning (FL) with the Metaverse AR (MAR) systems can enable many edge intelligence services in 5G. However, the presence of nonindependent and identically distributed (Non-IID) data across all AR users' devices, coupled with limited edge communication resources, makes it challenging to achieve human-centric Metaverse-related applications such as target detection or image classification that combine virtual content with real-world. To address these challenges, we propose a novel adaptive resource-efficient Metaverse-based FL (AMFL) algorithm for AR applications that mitigates the negative effect of Non-IID data and reduces resource costs as well as improves the quality of experience (QoE). We first analyze the impact of wireless communication factors such as CPU frequency, bandwidth, and transmission power on FL training performance by a toy example in the MAR systems. Based on this analysis, furthermore, we establish a Non-IID degree, model accuracy, and resource consumption-related QoE maximization problem under given resource budgets, which is a stochastic optimization problem with strongly coupled variables, including bandwidth, CPU frequency, and transmission power. Guided by the theoretical analysis, to solve this issue, AMFL employs a deep reinforcement learning (DRL)-based method to adaptively allocate resources. Numerical results demonstrate that AMFL can significantly improve the QoE by up to 30.28 % , and reduce communication round and energy costs by up to 81.08 % and 72.20 % , respectively, even under the worst Non-IID case, compared to benchmarks.
RESUMO
Golden snub-nosed monkeys show inconsistent frequency of placentophagy between wild and captive populations, with almost all births in the wild but around half of the births in captivity accompanied by the female's consumption of placenta. This aligns with nutritional demands-driven placentophagy, as captive populations are generally under less nutritional constraints for breeding females than the wild population. Placentophagy is probably adaptive in the wild and under positive selection due to nutritional benefits to both mothers and infants.
RESUMO
Shift of ingestive behavior is an important strategy for animals to adapt to change of the environment. We knew that shifts in animal dietary habits lead to changes in the structure of the gut microbiota, but we are not sure about if changes in the composition and function of the gut microbiota respond to changes in the nutrient intake or food items. To investigate how animal feeding strategies affect nutrient intakes and thus alter the composition and digestion function of gut microbiota, we selected a group of wild primate group for the study. We quantified their diet and macronutrients intake in four seasons of a year, and instant fecal samples were analyzed by high-throughput sequencing of 16S rRNA and metagenomics. These results demonstrated that the main reason that causes seasonal shifts of gut microbiota is the macronutrient variation induced by seasonal dietary differences. Gut microbes can help to compensate for insufficient macronutrients intake of the host through microbial metabolic functions. This study contributes to a deeper understanding of the causes of seasonal variation in host-microbial variation in wild primates.
RESUMO
The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) can measure the global surface with unprecedented resolution. Accurate classification of land and sea data is the prerequisite for generating high-quality data products. Current land-sea classification methods rely on assisted data or manual participation, and the automation degree cannot meet the needs of massive data processing. Therefore, using the land-sea difference of photon-counting LiDAR data, an index called normalized photon rate-elevation ratio (NPRER) is designed. Inspired by this, an automatic land-sea classification method is proposed, and the results are obtained through preliminary classification, reclassification, and post-processing enhancement. The results in Cook Inlet, Alaska, show that NPRER can measure the probability of sea appearance in the nearshore environment. At the same time, the automatic classification method can achieve an overall accuracy of 97.98%. The changes in the coastal type, data collection time, and classification feature sets have little influence on this method. Therefore, the method provides a reliable technical scheme for improving the automation of land-sea classification of satellite-based photon-counting LiDAR data.
RESUMO
Glycome in urine could be promising biomarkers for detecting pregnancy diagnosis and sex noninvasively for animals, especially for rare species. We explore the applicability of grouping golden snub-nosed monkeys by sex or diagnosing pregnancy based on their urinary glycopatterns, which are determined via lectin microarray combining mass spectrometry analysis. Sprague-Dawley rats are used to verify whether this approach and whether the glycomic biomarkers can be generalized to other mammalian species. The results show that, for both species, lectin microarray combining mass spectrometry can distinguish individuals' pregnancy status and sex; significant differences are found in the types, amounts, and terminal modification of glycans between pregnant and non-pregnant females and between females and males. This indicates the approach could be generalized to other mammalian species to group sex and detect pregnancy, yet the glycopatterns appear to be species-specific and markers developed from one species may not be directly applicable to another.
RESUMO
Evolutionary and historical development and current profiles are essential to generating a tangible conservation strategy. It is also critical to distinguish the regions with vigorous potential growth from those meeting evolutionary development bottlenecks and those whose development has been severely devastated. We used two sizeable national data repositories of terrestrial fauna and flora of China to approach the issues. The results indicate that the Southwest and Coastal regions have the most significant terrestrial faunal-floral biodiversity (TFFB). Thus, they should be prioritized in conservation for great potential promotions. Although there has been remarkable evolutionary development, the Central region has been severely devastated. A solution is to uphold a balanced association between social-economic development and TFFB sustainability. As for the Northeast and the western Northwest, there is no need to invest heavily in conservation measures. This study sheds light on exploring more practical conservation strategies regionally, nationally, and globally to achieve pragmatic goals.
RESUMO
Battery safety is vital to the application of lithium-ion batteries (LIBs), especially for high energy density cells applied in electric vehicles. As an anode material with high theoretical capacity and natural abundance, Si has received extensive attention for LIBs. However, it suffers from severe electrode pulverization during cycling due to large volume changes and an unstable solid electrolyte interphase (SEI), resulting in accelerated capacity fading and even safety hazards. Therefore, safe and long-term cycling of Si-based anodes, especially under high-temperature cycling, is highly challenging for state-of-the-art high-energy LIBs. The thermal behavior of SEI is crucial for a high safety battery as the decomposition of SEI is the first step in thermal runaway. Here, highly reversible and thermotolerant microsized Si anodes for safe LIBs are demonstrated. Comprehensive electrochemical/mechanical/thermochemical behaviors of the SEI are systematically investigated. The rational design of robust SEI endows the Si-based cells with long-term durability at elevated temperatures and superior thermal safety. This work paves the way for designing industrial-scale, low-cost, microsized Si anodes with applications in next-generation LIBs with high energy densities and high safety.
RESUMO
In mammal herbivores, fiber digestion usually occurs predominantly in either the foregut or the hindgut. Reports of mechanisms showing synergistic function in both gut regions for the digestion of fiber and other nutrients in wild mammals are rare because it requires integrative study of anatomy, physiology, and gut microbiome. Colobine monkeys (Colobinae) are folivorous, with high-fiber foods fermented primarily in their foreguts. A few colobine species live in temperate regions, so obtaining energy from fiber during the winter is essential. However, the mechanisms enabling this remain largely unknown. We hypothesized that such species possess specialized mechanisms to enhance fiber digestion in the hindgut and studied microbial and morphological digestive adaptations of golden snub-nosed monkeys (GSMs), Rhinopithecus roxellana. which is a temperate forest colobine from central China that experiences high-thermal-energy demands while restricted to a fibrous, low-energy winter diet. We tested for synergistic foregut and hindgut fiber digestion using comparisons of morphology, microbiome composition and function, and digestive efficiency. We found that the GSM colon has a significantly greater volume than that of other foregut-fermenting colobines. The microbiomes of the foregut and hindgut differed significantly in composition and abundance. However, while digestive efficiency and the expression of microbial gene functions for fiber digestion were higher in the foregut than in the hindgut, both gut regions were dominated by microbial taxa producing enzymes to enable active digestion of complex carbohydrates. Our data suggest that both the GSM foregut and hindgut facilitate fiber digestion and that an enlarged colon is likely an adaptation to accommodate high throughput of fiber-rich food during winter.
RESUMO
BACKGROUND: Successful mechanical thrombectomy (MT) requires reliable, noninvasive selection criteria. We aimed to investigate the association of collateral status and clinical outcomes after MT in patients with ischemic stroke due to anterior circulation occlusion. METHODS: 109 patients with poor collaterals and 110 aged, sex-matched patients with good collaterals were enrolled in the study. Collateral circulation was estimated by the CT angiography with a 0-3 scale. The collateral status was categorized as poor collaterals (scores 0-1) and good collaterals (scores 2-3). The reperfusion was assessed by the modified Treatment in Cerebral Infarction scale (mTICI, score 0/1/2a/2b/3). The clinical outcomes included the scores on the modified Rankin scale (mRS, ranging from 0 to 6) and death 90 days after mechanical thrombectomy. RESULTS: Patients with greater scores of collateral status were more likely to achieve successful reperfusion (mTICI 2b/3). Patients with good collaterals were significantly associated with a higher chance of achieving mRS of 0-1 at 90 days (adjusted ORs: 4.55; 95% CI: 3.17-7.24; and P < 0.001) and a lower risk of death at 90 days (adjusted ORs: 0.87; 95% CI: 4.0%-28.0%; and P = 0.012) compared to patients with poor collaterals. In subgroup analyses, patients with statin use seem to benefit more from the effect of collateral status on good mRS (≤2). CONCLUSION: Among patients with acute ischemic stroke caused by anterior circulation occlusion, better collateral status is associated with higher scores on mRS and lower mortality after mechanical thrombectomy. Statin use might have an interaction with the effect of collateral status.
Assuntos
Isquemia Encefálica , Inibidores de Hidroximetilglutaril-CoA Redutases , AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Isquemia Encefálica/cirurgia , Angiografia Cerebral , Circulação Cerebrovascular , Humanos , Acidente Vascular Cerebral/cirurgia , Trombectomia , Resultado do TratamentoRESUMO
A systematic understanding of dynamic animal extinction trajectories for different regions in a nation like China is critically important to developing practical conservation strategies. We explored historical and contemporary changes in terrestrial mammalian diversity to determine how diversity in each of the 5 regions in China has changed over time and to examine the conservation potential of these regions. We used records from databases on Pleistocene mammalian fossils and historical distribution records (1175-2020) for Primates (as a case study) to reconstruct evolutionary and historical distribution trajectories of the 11 orders of terrestrial mammals and to predict their prospective survival based on the national conservation strategy applied. The results indicated that since the Pleistocene, 4-5 mammalian orders have been lost in the northeast, 3 in central China, 2 along the coast, and 1 in the northwest. In the southwest, all 11 orders were maintained. Contemporarily, the coast and southwest had the highest and second-highest species densities. The southwest region and southeastern sections of the northwest region were the most historically and contemporarily diverse areas, which suggests that they should be the first priority for protected area (PA) designation. The central and coastal areas should be secondarily prioritized. In these 2 regions, conservation should focus on human coexistence with nature. Less attention should be paid to the PA in the northeast and western northwest because in these areas ecosystems are depauperate and the climate is harsh. Conservation in these areas should focus principally on avoiding further human encroachment on natural areas. Article impact statement: Historical and contemporary patterns of extinction can be a basis for mammalian conservation strategies.
Uso de la Distribución Histórica y Contemporánea de los Mamíferos en China para Orientar a la Conservación Resumen El entendimiento sistemático de las trayectorias de extinción dinámica de los animales para diferentes regiones en un país como en China es de importancia crítica para poder desarrollar estrategias de conservación prácticas. Exploramos los cambios históricos y contemporáneos en la diversidad de mamíferos terrestres para determinar cómo ha cambiado con el tiempo la diversidad en cada una de las cinco regiones de China y para examinar el potencial de conservación de aquellas regiones. Usamos registros tomados de bases de datos con información sobre los fósiles de mamíferos del Pleistoceno y registros de la distribución histórica (1175 - 2020) de los primates (como estudio de caso) para reconstruir las trayectorias de distribución históricas y contemporáneas de los once órdenes de mamíferos terrestres presentes en China. También utilizamos esta información para predecir la supervivencia potencial de estos órdenes con base en la estrategia nacional de conservación aplicada. Los resultados indicaron que, desde el Pleistoceno, entre cuatro y cinco órdenes de mamíferos se han perdido en el noreste de China, tres en la zona central, dos a lo largo de la costa y uno en el noroeste. En el suroeste del país se han mantenido los once órdenes. Actualmente, la costa y el suroeste tienen la primera y segunda densidad más alta de especies. La región del suroeste y las secciones al sureste de la región del noroeste son las áreas con la mayor diversidad histórica y contemporánea, lo que sugiere que deberían ser de primera prioridad para la designación de áreas protegidas (AP). Las áreas de la costa y el centro deberían ser las de segunda prioridad por la misma razón. En estas dos últimas regiones, la conservación debería enfocarse en la coexistencia entre los humanos y la naturaleza. Se les debería prestar una menor atención a las AP en el noreste y en la zona oeste del noroeste porque en estas áreas los ecosistemas son paupérrimos y el clima es hostil. La conservación en estas áreas debería enfocarse principalmente en evitar más invasiones humanas dentro de las áreas naturales.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , China , Mamíferos , Estudos ProspectivosRESUMO
The demand for fast-charging of lithium-ion batteries (LIBs) in modern electric transportation and wearable electronics is rapidly growing. However, commercially available graphite anodes still suffer from slow kinetics of lithium-ion diffusion and severe safety concerns of lithium plating when achieving the fast-charging goal. Here, it is demonstrated that the Li-ion diffusion kinetics of orthorhombic Nb2O5 nanotubes (T-Nb2O5 NTs) is enhanced by atomically precise manufacturing of nanoarchitectures. The controlled fabrication of T-Nb2O5 NTs with wall thicknesses from 24 to 43 nm is realized via atomic layer deposition (ALD) using electrospun polyacrylonitrile nanofibers as a sacrificing template. The wall thickness of T-Nb2O5 NTs can be precisely tuned by adjusting the number of ALD cycles. The relationship between the wall thicknesses and electrochemical performances is investigated in detail. The electrochemical kinetic analysis suggests that the lithium storage in T-Nb2O5 NTs is dominated by surface and intercalation pseudocapacitance. The morphology of T-Nb2O5 crystallites is found to have significant effects on the Li-ion insertion/extraction kinetics and the performance of the electrodes in LIBs. The resulting T-Nb2O5 NTs exhibit fast charge-storage kinetics and enable highly reversible insertion/extraction of Li ions without a phase change. This work may open up a new avenue for further development of intercalation-pseudocapacitive nanostructured materials for high-rate and ultrastable energy-storage devices.
RESUMO
Tremendous efforts have been dedicated to the development of high-performance electrochemical energy storage devices. The development of lithium- and sodium-ion batteries (LIBs and SIBs) with high energy densities is urgently needed to meet the growing demands for portable electronic devices, electric vehicles, and large-scale smart grids. Anode materials with high theoretical capacities that are based on alloying storage mechanisms are at the forefront of research geared towards high-energy-density LIBs or SIBs. However, they often suffer from severe pulverization and rapid capacity decay due to their huge volume change upon cycling. So far, a wide variety of advanced materials and electrode structures are developed to improve the long-term cyclability of alloying-type materials. This review provides fundamentals of anti-pulverization and cutting-edge concepts that aim to achieve high-performance alloying anodes for LIBs/SIBs from the viewpoint of architectural engineering. The recent progress on the effective strategies of nanostructuring, incorporation of carbon, intermetallics design, and binder engineering is systematically summarized. After that, the relationship between architectural design and electrochemical performance as well as the related charge-storage mechanisms is discussed. Finally, challenges and perspectives of alloying-type anode materials for further development in LIB/SIB applications are proposed.
RESUMO
Studies of positional behavior, gait, and habitat use are important for understanding how animals adapt to the challenges of their environment. In turn, this information is useful for advancing research on primate morphology, life history, and ecology. Data on eco-mechanical variables can be used to develop concrete conservation and management plans for understudied and threatened primate groups. The present study explores the positional behavior, gaits, and habitat use of male and female adult golden snub-nosed monkeys (Rhinopithecus roxellana), an endemic, endangered, and highly dimorphic species of central China. Using focal animal sampling and opportunistic videorecording in the Guanyinshan National Nature Reserve on the southern slopes of the Qinling Mountains, it was determined that gait parameters were largely the same between sexes. By contrast, habitat use and, to a lesser extent, positional behavior varied significantly between males and females. In general, males were more terrestrial than females. When they moved arboreally, males also used a greater proportion of horizontal and large substrates compared to females. Furthermore, males used more standing postures, forelimb suspensory positional behaviors, and quadrupedal walking. These data suggest that, when faced with the mechanical challenges of large body size, primates such as R. roxellana are more likely to respond by altering habitat use rather than positional behaviors or intrinsic kinematics and timing.
Assuntos
Colobinae , Presbytini , Animais , China , Ecossistema , Feminino , Marcha , Masculino , Caracteres SexuaisRESUMO
Safety issues in lithium-ion batteries (LIBs) have aroused great interest owing to their wide applications, from miniaturized devices to large-scale storage plants. Separators are a vital component to ensure the safety of LIBs; they prevent direct electric contact between the cathode and anode while allowing ion transport. In this study, the first design is reported for a thermoregulating separator that responds to heat stimuli. The separator with a phase-change material (PCM) of paraffin wax encapsulated in hollow polyacrylonitrile nanofibers renders a wide range of enthalpy (0-135.3 J g-1 ), capable of alleviating the internal temperature rise of LIBs in a timely manner. Under abuse conditions, the generated heat in batteries stimulates the melting of the encapsulated PCM, which absorbs large amounts of heat without creating a significant rise in temperature. Experimental simulation of the inner short-circuit in prototype pouch cells through nail penetration demonstrates that the PCM-based separator can effectively suppress the temperature rise due to cell failure. Meanwhile, a cell penetrated by a nail promptly cools down to room temperature within 35 s, benefiting from the latent heat-storage of the unique PCM separator. The present design of separators featuring latent heat-storage provides effective strategies for overheat protection and enhanced safety of LIBs.
RESUMO
Apposite conceptualization and measurement of resource variation is critical for understanding many issues in ecology, including ecological niches, persistence and distribution of populations, the structure of communities and population resilience to perturbations. We apply the nutritional geometry framework to conceptualize and quantify the responses of a temperate-living primate, the golden snub-nosed monkey Rhinopithecus roxellana to variation in resource quality and quantity and in nutrient requirements associated with seasonal environments. We present a geometric model distinguishing qualitative constraint, quantitative constraint and 'pseudo-constraint' whereby nutrient intakes resemble response to qualitative resource constraint but are in fact driven by variation in nutrient requirements. The model is applied to analyse nutrient intakes recorded in 164 full-day observations of monkeys from two populations, one wild and the other captive, across seasons. Additionally, we recorded the diet of a single animal over 32 consecutive days in the wild. Despite considerable differences in available resources, the captive and wild populations showed marked similarities in nutrient intakes, including indistinguishable amounts and ratios of ingested macronutrients during summer and autumn and strong year-round maintenance of protein compared to seasonally variable fat and carbohydrate intakes. These similarities suggest homeostatically regulated nutritional targets and provide reference points to identify factors driving population differences in macronutrient intake in winter and spring. Our framework enabled us to distinguish examples of quantitative, qualitative and 'pseudo-constraint'. We suggest that this approach can increase the resolution at which resource constraint is conceptualized and measured in ecological studies.
Assuntos
Colobinae , Presbytini , Animais , China , Dieta/veterinária , Estações do AnoRESUMO
OBJECTIVES: Social animals often have dominance hierarchies, with high rank conferring preferential access to resources. In primates, competition among males is often assumed to occur predominantly over reproductive opportunities. However, competition for food may occur during food shortages, such as in temperate species during winter. Higher-ranked males may thus gain preferential access to high-profitability food, which would enable them to spend longer engaged in activities other than feeding. MATERIALS AND METHODS: We performed a field experiment with a breeding band of golden snub-nosed monkeys, a species that lives in a multi-level society in high-altitude forests in central China. We provisioned monkey's high-profitability food during winter when natural foods are limited, and then recorded the times individual adult males spent engaged in different behaviors. RESULTS: Higher-ranking males spent less time feeding overall and fed on provisioned foods at a higher rate than lower-ranking males. Higher-ranking males therefore had more time to spend on alternative behaviors. We found no significant difference according to rank in times spent moving or resting. However, high-ranking males spend significantly longer on affiliative behaviors with other members of their social sub-units, especially grooming and being groomed, behaviors known to promote social cohesion in primates. DISCUSSION: We show that preferential access to high-profitability foods likely relaxes time-budget constraints to higher-ranking males. High-ranking males thus spend more time on non-feeding activities, especially grooming, which may enhance social cohesion within their social sub-unit. We discuss the potential direct and indirect benefits to high-ranking males associated with preferential access to high-value food during winter.