RESUMO
BACKGROUND: Borreria latifolia (Aubl.) K. Schum (Rubiaceae) is an annual weed with a strong allelopathic inhibitory effect on malignant weeds in orchards in southern China. This study was carried out to investigate its allelopathic potential and to identify allelochemicals present in B. latifolia. RESULTS: Aqueous extracts of B. latifolia inhibited the germination and radicle growth of Eleusine indica and the radicle growth of Bidens alba in a dose-dependent manner. However, only the high-concentration treatment at 50 mg mL-1 delayed the germination of B. alba and Digitaria sanguinalis. Among the root, stem, and leaf aqueous extracts of B. latifolia, the leaf extract had the strongest inhibitory effects on the germination and seedling growth of E. indica, followed by stem extract and then root extract. A total of 47 published allelochemicals, including coumarin, 4-hydroxybenzoate, salicylic acid, 4-hydroxycinnamic acid, and vanillic acid, were identified in the leaf extract. Among the five allelochemicals, coumarin was found to be present in the highest concentration in the leaf extract. Furthermore, coumarin exhibited a significantly greater inhibitory effect on E. indica (EC50 = 36.87 mg L-1) than did the other allelochemicals (EC50 = 100.87-156.30 mg L-1). CONCLUSION: This study indicates that the leaf extracts of B. latifolia and their allelochemicals have excellent potential as bioherbicides and that coumarin is one of the key allelochemicals in B. latifolia. © 2024 Society of Chemical Industry.
RESUMO
The evolved resistance of Bromus japonicus Houtt. to ALS-inhibiting herbicides is well established. Previous studies have primarily focused on target-site resistance; however, non-target-site resistance has not been well characterized. This investigation demonstrated that ALS gene sequencing did not detect any previously known resistance mutations in a mesosulfuron-methyl-resistant (MR) population, and notably, treatment with the P450 monooxygenase (P450) inhibitor malathion markedly heightened susceptibility to mesosulfuron-methyl. Utilizing UPLC-MS/MS analysis confirmed elevated mesosulfuron-methyl metabolism in MR plants. The integration of Isoform Sequencing (Iso-Seq) and RNA Sequencing (RNA-Seq) facilitated the identification of candidate genes associated with non-target sites in a subpopulation with two generations of herbicide selection. Through qRT-PCR analysis, 21 differentially expressed genes were characterized, and among these, 10 genes (comprising three P450s, two glutathione S-transferases, one glycosyltransferase, two ATP-binding cassette transporters, one oxidase, and one hydrolase) exhibited constitutive upregulation in resistant plants. Our findings substantiated that increased herbicide metabolism is a driving force behind mesosulfuron-methyl resistance in this B. japonicus population.
RESUMO
Broomcorn millet (Panicum miliaceum L.) is an orphan crop with the potential to improve cereal production and quality, and ensure food security. Here we present the genetic variations, population structure and diversity of a diverse worldwide collection of 516 broomcorn millet genomes. Population analysis indicated that the domesticated broomcorn millet originated from its wild progenitor in China. We then constructed a graph-based pangenome of broomcorn millet based on long-read de novo genome assemblies of 32 representative accessions. Our analysis revealed that the structural variations were highly associated with transposable elements, which influenced gene expression when located in the coding or regulatory regions. We also identified 139 loci associated with 31 key domestication and agronomic traits, including candidate genes and superior haplotypes, such as LG1, for panicle architecture. Thus, the study's findings provide foundational resources for developing genomics-assisted breeding programs in broomcorn millet.
Assuntos
Panicum , Panicum/genética , Panicum/química , Domesticação , Melhoramento Vegetal , Fenótipo , GenômicaRESUMO
Coumarin is an allelochemical that is widely present in the plant kingdom and has great potential for weed control. However, its mechanisms of action remain largely unknown. This study employed metabolomic and transcriptomic analyses along with evaluations of amino acid profiles and related physiological indicators to investigate how coumarin inhibits the germination and seedling growth of Eleusine indica by modifying metabolic pathways. At 72 h of germination at 50 and 100 mg L-1 coumarin, E. indica had lower levels of soluble sugar and activities of amylases and higher levels of starch, O2-, H2O2, auxin (IAA) and abscisic acid (ABA) compared to the control. Metabolomic analysis demonstrated that coumarin treatments had a significant impact on the pathways associated with amino acid metabolism and transport and aminoacyl-tRNA biosynthesis. Exposure to coumarin induced significant alterations in the levels of 19 amino acids, with a decrease in 15 of them, including Met, Leu and γ-aminobutyric acid (GABA). Additionally, transcriptomic analysis showed that coumarin significantly disrupted several essential biological processes, including protein translation, secondary metabolite synthesis, and hormone signal transduction. The decrease in TCA cycle metabolite (cis-aconitate, 2-oxoglutarate, and malate) contents was associated with the suppression of transcription for related enzymes. Our findings indicate that the inhibition of germination and growth in E. indica by coumarin involves the suppression of starch conversion to sugars, modification of the amino acid profile, interference of hormone signalling and the induction of oxidative stress. The TCA cycle appears to be one of the most essential pathways affected by coumarin.
RESUMO
Japanese brome (Bromus japonicus Thunb.) is a weed commonly found in roadsides, floodplain wetlands, and farmlands. During September 2020 and 2021, a leaf spot disease was observed on B. japonicus in greenhouses of Baodi district, Tianjin, China (117°15'E, 39°47'N). More than 10% of the weeds were infected. Initial irregular brown spots on leaf apices continued to expand until adjacent spots coalesced. Eventually, severely infected leaves became yellow, thinner, drier and withered. Small patches (3×3 mm) were cut from symptomatic leaves, sterilized with 75% ethanol for 30s, rinsed three times with sterile water and incubated on Petri dishes with potato dextrose agar at 25°C in darkness for 7 days. Three isolates, with uniform morphology were selected for further analysis. Colonies were cottony with entire edges and aerial white mycelia; and average growth rate of 4.5 mm/day. The upper side was pale white, and the reverse side was grayish-green. Conidia were aseptate, hyaline, subcylindrical with rounded ends, 8.6 to 18.7×4.4 to 8.3 µm (n = 50). Appressoria were dark brown, oval or irregular shaped with a few lobes, 5.7 to 9.4×4.5 to 7.8 µm (n = 50). Total genomic DNA of isolates was extracted with Fungal DNA Kit (GBCBIO, Guangzhou, China). Primers for sequences of internal transcribed spacer (ITS) regions, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ß-tubulin (TUB2), and calmodulin (CAL) genes were amplified and sequenced (Weir et al., 2012). After aligned and trimmed, the sequences of TJBDA1, TJBDA2, and TJBDA3 were identical. TJBDA1 representative isolate sequences were deposited in GenBank ITS OP247554 with 99.83% (576/577) similarity to MT476809, GAPDH OP414834 with 99.59% (244/245) similarity to MT501009, TUB2 OP414836 with 100% (703/703) to MT501053, and CAL OP414835 with 100% (601/601) to MT500921. Maximum likelihood trees based on concatenated sequences of the four genes were constructed using MEGA7.0. The results showed that the strains isolated from B. japonicus were closely related to C. aenigma with 99% bootstrap support. Pathogenicity tests were conducted on 3-leaf stage B. japonicus seedlings. Conidial suspension of TJBDA1 (1×106 conidia/ml) brushed from a 7-day-old culture of the fungus were sprayed on 9 B. japonicus seedlings. Control plants were sprayed with sterile water. All treatments were replicated four times. The treatment plants were placed in an incubator (25°C, relative humidity > 80%, 12-h photoperiod). Typical leaf spot symptoms resembling ones in the fields were observed on inoculated leaves after 7 days, but control leaves remained symptomless. The fungi reisolated from diseased leaves were morphologically and molecularly identical to the inoculated isolatescompleting Koch's postulates. According to morphological, pathological characteristics and multilocus phylogenetic analysis, the isolated strains from B. japonicus were identified as C. aenigma. To our knowledge, this is a new host record for C. aenigma causing anthracnose on B. japonicus in China. Currently, B. japonicus has evolved a high level of resistance to herbicides in some regions of China (Li et al, 2022) and C. aenigma caused serious disease to B. japonicus. We hope to discover a biocontrol method against weed on non-host cultivated plants through the production of secondary metabolites by C. aenigma.
RESUMO
Glyphosate has been widely used to control Eleusine indica and other weeds in South China for many years. Among the most troublesome weeds in South China, E. indica can remain alive all year round. However, the influence of temperature on glyphosate efficacy on E. indica, especially under days with fluctuating temperature, is unknown. This study evaluated the influence of two temperature regimes on glyphosate efficacy on glyphosate-resistant (R) and -susceptible (S) E. indica biotypes. Plants of the R and S biotypes were cultivated under two temperature regimes (high: 30°C/20°C day/night; low: 20°C/15°C day/night). Dose-response experiments showed improved efficacy of glyphosate at the low temperature compared with that at the high temperature for both biotypes. Based on the LD50 values, the R biotype was 8.9 times more resistant to glyphosate than the S biotype at the high temperature; however, the resistance index (R/S) decreased to 3.1 at the low temperature. At 4 days after glyphosate application, shikimic acid accumulation was greater at the low temperature than at the high temperature in plants of both biotypes, and the increase was higher in plants of the R biotype than in the S biotype. At a sublethal glyphosate dose (R: 400 g ai ha-1; S: 200 g ai ha-1), plants grown at the low temperature showed a strong decrease in leaf chlorophyll content and Fv/Fm value compared with those of plants grown at the high temperature and the untreated control. At 3 days after treatment, glyphosate absorption was similar between biotypes at the high temperature, but absorption decreased to 64.9% and 53.1% at the low temperature for the R and S biotypes, respectively. For both biotypes, glyphosate translocation from the leaf to the remainder of the plant was reduced at the low temperature compared with that at the high temperature. No differences in glyphosate translocation were observed between biotypes within each temperature regime. This is the first report on the effect of temperature on glyphosate efficacy on E. indica, and provides important insights for glyphosate application and resistance management.
RESUMO
In the original publication [...].
RESUMO
Biomass energy is an essential component of the agriculture economy and represents an important and particularly significant renewable energy source in the fight against fossil fuel depletion and global warming. The recognition that many plants naturally synthesize hydrocarbons makes these oil plants indispensable resources for biomass energy, and the advancement of next-generation sequencing technology in recent years has now made available mountains of data on plants that synthesize oil. We have utilized a combination of bioinformatic protocols to acquire key information from this massive amount of genomic data and to assemble it into an oil plant genomic information repository, built through website technology, including Django, Bootstrap, and echarts, to create the Genomic Information Repository for Oil Plants (GROP) portal (http://grop.site/) for genomics research on oil plants. The current version of GROP integrates the coding sequences, protein sequences, genome structure, functional annotation information, and other information from 18 species, 22 genome assemblies, and 46 transcriptomes. GROP also provides BLAST, genome browser, functional enrichment, and search tools. The integration of the massive amounts of oil plant genomic data with key bioinformatics tools in a database with a user-friendly interface allows GROP to serve as a central information repository to facilitate studies on oil plants by researchers worldwide.
RESUMO
Hickory (Carya cathayensis) is a critical tree species of the genus Carya from the Juglandaceae family that contains nutrient-rich nuts. Due to large-scale soil degradation, the pests and diseases of hickory are becoming more and more serious. Thaumatin-like proteins (TLPs) are vital proteins involved in the complex defense process of plant pathogens. In this study, 40 CcTLP genes were identified genome-widely and phylogenetically grouped into three subfamilies. The sequence of CcTLPs had a conservative pattern, such as eight stable disulfide bonds, REDDD, and G-X-[GF]-X-C-X-T-[GA]-D-C-X(1,2)-G-X-(2,3)-C structure. In total, 57 cis-elements related to stress-responsive, light-responsive, phytohormone-responsive, and plant-responsive were discovered. Under salicylate (SA), methyl jasmonate (MeJA), and ethephon (ETH) treatments, the expressions of CcTLP28, CcTLP29, CcTLP30, CcTLP31, CcTLP32, CcTLP33, CcTLP37, CcTLP38, and CcTLP39 had different patterns. This is an indication that most of the TLP genes were upregulated by SA and downregulated by MeJA. Notably, seven TLP genes were significantly upregulated under the Botryosphaeria dothidea inoculation, especially CcTLP31, with an over 20-fold change. Nine genes were shown by subcellular localization analysis to be located at the plasma membrane and cytoplasm. The knowledge of the disease-resistant function of the CcTLP family in hickory is promoted by these results. A foundation reference for the molecular breeding of this plant in the future is provided by our findings.
RESUMO
BACKGROUND: Glyphosate has been used for weed control in South China in various situations for four decades, and most Eleusine indica populations are suspected to have evolved resistance to glyphosate. This research investigated underling target-site glyphosate resistance mechanisms in six field-collected, putative glyphosate-resistant (R) E. indica populations. RESULTS: The six R E. indica populations were confirmed to be low (1.8 to 2.6-fold) to moderately (5.6- to 8.4-fold) resistant to glyphosate relative to the susceptible (S) population. Sixty-seven glyphosate-surviving plants from the six R populations were used to examine target-site resistance mechanisms. Target-site 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) overexpression (OE) (plus further induction by glyphosate treatment) and gene copy number variation (CNV) occurred in 94% R plants, and among them, 16% had the P106A mutation and 49% had the heterozygous double TIPS (T102I + P106S) mutation (plus P381L). In addition, a low number of R plants (6%) only had the homologous TIPS (plus P381L) mutation. The (CT)6 insertion mutation in the EPSPS 5-UTR always associates with EPSPS OE and CNV. Progeny plants possessing EPSPS OE/CNV (and P106A) displayed low level (up to 4.5-fold) glyphosate resistance. In contrast, plants homozygous for the TIPS mutation displayed higher (25-fold) resistance to glyphosate and followed by plants heterozygous for this mutation plus EPSPS OE/CNV (12-fold). CONCLUSIONS: Target-site glyphosate resistance in E. indica populations from South China is common with prevalence of EPSPS OE/induction/CNV conferring low level resistance. Individual plants acquiring both the TIPS mutation and EPSPS OE/CNV are favored due to evolutionary advantages. The role of (CT)6 insertion mutation in EPSPS CNV is worth further investigation. © 2021 Society of Chemical Industry.
Assuntos
Eleusine , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Variações do Número de Cópias de DNA , Eleusine/genética , Eleusine/metabolismo , Regulação da Expressão Gênica de Plantas , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , GlifosatoRESUMO
Flixweed (Descurainia sophia L.) is widely distributed in winter wheat (Triticum aestivum L.) fields in the North China Plain and has evolved resistance to herbicides, including the acetolactate synthase (ALS) inhibitor florasulam. However, the florasulam resistance status of flixweed in the North China Plain is poorly understood, which hinders the integrated management of this weed in winter wheat production systems. Thus, 45 flixweed populations were collected in wheat fields in these areas, and their sensitivity to florasulam and ALS-inhibitor-resistant mutation diversity were assessed. Meanwhile, alternative herbicides/herbicide mixtures for the control of florasulam-resistant flixweed were screened and evaluated under greenhouse and field conditions. Of the populations, 30 showed florasulam resistance (RRR and RR), 9 had a high risk of evolving florasulam resistance (R?) and 6 were susceptible. These populations had 5.3 to 345.1-fold resistance to florasulam, and 4 ALS resistance mutations (P197H, P197S, P197T and W574L) were observed. The subsequent herbicide sensitivity assay showed that the SD-06 population (with ALS1 P197T and ALS2 W574L mutations) exhibited cross-resistance to all ALS inhibitors tested, but was sensitive to MCPA-Na, fluroxypyr, carfentrazone-ethyl and bipyrazone. Meanwhile, the other HN-07 population with non-target-site resistance (NTSR) also showed resistance to all tested ALS inhibitors, and it was "R?" to MCPA-Na while sensitive to fluroxypyr, carfentrazone-ethyl and bipyrazone. The field experiments were conducted at the research farm where the SD-06 population was collected, and the results suggested that florasulam at 3.75-4.5 g ai ha-1 had little efficacy (0.6-12.1%), whereas MCPA-Na + carfentrazone-ethyl (87.1-91.2%) and bipyrazone+fluroxypyr (90.1-97.8%) controlled the resistant flixweed.
Assuntos
Acetolactato Sintase , Herbicidas , Acetolactato Sintase/genética , Sulfonatos de Arila/toxicidade , China , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Pirimidinas , SulfonamidasRESUMO
Due to its peculiar morphological characteristics, there is dispute as to whether the genus of Annamocarya sinensis, a species of Juglandaceae, is Annamocarya or Carya. Most morphologists believe it should be distinguished from the Carya genus while genomicists suggest that A. sinensis belongs to the Carya genus. To explore the taxonomic status of A. sinensis using chloroplast genes, we collected chloroplast genomes of 16 plant species and assembled chloroplast genomes of 10 unpublished Carya species. We analyzed all 26 species' chloroplast genomes through two analytical approaches (concatenation and coalescence), using the entire and unique chloroplast coding sequence (CDS) and entire and protein sequences. Our results indicate that the analysis of the CDS and protein sequences or unique CDS and unique protein sequence of chloroplast genomes shows that A. sinensis indeed belongs to the Carya genus. In addition, our analysis shows that, compared to single chloroplast genes, the phylogeny trees constructed using numerous genes showed higher consistency. Moreover, the phylogenetic analysis calculated with the coalescence method and unique gene sequences was more robust than that done with the concatenation method, particularly for analyzing phylogenetically controversial species. Through the analysis, our results concluded that A. sinensis should be called C. sinensis.
RESUMO
Juglandaceae species are plants of great economic value and have been cultivated, domesticated, and utilized by human society for a long time. Their edible, nutrient-rich nuts and tough, durable wood have attracted the attention of botanists and breeders. With the advent of the genomics era, genome sequencing of the Juglandaceae family has been greatly accelerated, and a large amount of data has been generated. In this paper, we introduce the Portal of Juglandaceae (PJU), a tool to bring all these data together. The PJU contains genomes, gene-coding sequences, protein sequences, various types of annotation information, expression data, and miRNA data, which are configured with BLAST, JBrowse, and our self-developed synteny analysis tool. The PJU has a user-friendly and straightforward interface that performs a variety of query tasks with a few simple operations. In the future, we hope that the PJU will serve as a hub for the study of the Juglandaceae family.
RESUMO
QYR301, a novel herbicidal inhibitor of 4-hydroxyphenylpyruvate dioxygenase (HPPD), has great potential for resistant weed control in paddy fields, but massive use of pesticides may result in toxicity to soil non-target organisms. Thus, this study was designed to assess subchronic toxicity of different doses of QYR301 in artificial soil (0, 0.1, 1.0, 2.5, and 5.0 mg kg-1) to earthworms (Eisenia fetida) on days 7, 14, 21, and 28 after exposure, using biomarkers of reactive oxygen species (ROS) and malondialdehyde (MDA) contents, activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione-S-transferase (GST), and DNA damage. The ROS content significantly increased for all treatments on 7 and 14 days then decreased, and recovered to control level for 0.1 and 1.0 mg kg-1 treatment on day 28. Concerning enzymes activities, QYR301 increased POD, SOD, and GST activities, but inhibited CAT activity. Except for POD activity, SOD, CAT, and GST activities of 0.1 mg kg-1 group recovered to control level on day 28. Also, the MDA content of 0.1 mg kg-1 group reached control level on day 28. However, DNA damage was observed for all treatments throughout the experiment and it increased with increasing doses and time except for 5.0 mg kg-1 treatment on day 28. These results suggested that QYR301 induced excessive ROS production leading to oxidative stress in earthworms, which caused lipid membrane peroxidation and DNA damage ultimately. The findings could provide a theoretical foundation for assessing ecological damage of QYR301 to soils and a guide for future QYR301 applications.
Assuntos
Ésteres/toxicidade , Herbicidas/toxicidade , Oligoquetos/fisiologia , Pirazóis/toxicidade , Animais , Biomarcadores , Catalase/metabolismo , Dano ao DNA , Inibidores Enzimáticos/toxicidade , Glutationa Transferase/metabolismo , Malondialdeído , Oligoquetos/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio , Solo , Poluentes do Solo/toxicidade , Superóxido Dismutase/metabolismoRESUMO
Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1-3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.
Assuntos
Genoma de Planta , Nymphaea/genética , Filogenia , Flores/genética , Flores/metabolismo , Nymphaea/metabolismo , Odorantes/análiseRESUMO
Boron-doped carbon nanotubes are a promising candidate for Li storage due to the unique electronic structure and high crystallinity brought by the boron dopants. However, the relatively low Li storage capacity has limited its application in the electrochemical energy storage field, which is mainly caused by the predominantly intact graphitic structure on their surface with limited access points for Li ion entering. Herein, we report a novel B-doped CNTs (py-B-CNTs) film, in which the CNTs possess intrinsically rough surface but flat internal graphitic structure. When used as a flexible anode material for LIBs, this py-B-CNTs film delivers significantly enhanced capacity than the conventional B-doped CNTs or the pristine CNTs films, with good rate capability and excellent cycling performance as well. Moreover, this flexible film also possesses excellent mechanical flexibility, making it capable of being used in a prototype flexible LIB with stable power output upon various bending states.
RESUMO
A rapid and simple method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) of sample preparation using QuEChERS was developed for detecting residues of QYR301, a new HPPD-inhibiting herbicide, in rice plant (straw), water, soil, rice hull and brown rice (BR). To eliminate matrix interference, matrix-matched calibrations with satisfactory linearity (R2â¯>â¯0.99) were used for accurate quantification. The method showed recoveries of 90.3-108.1% and relative standard deviations (RSDs)â¯<â¯11%. The limits of quantification (LOQ) for QYR301 were 0.005â¯mgâ¯kg-1 in all five matrixes. Furthermore, the dissipation kinetics and terminal residues of QYR301 were determined at two sites in 2018. The days for 50% dissipation (DT50) of QYR301 in rice plants, water and soil were 3.6-4.4, 0.7-3.0 and 4.3-8.0â¯d, respectively, which indicated that QYR301 is a short-persistence herbicide. Moreover, no QYR301 residues were detected in BR, rice hull and straw collected at harvest following its application at 1.0 or 1.5â¯×â¯of the recommended high rate. These results will help organizations and governments establish related principles/laws regarding the use of QYR301 in terms of environmental protection, food safety and other potential aspects.
Assuntos
Monitoramento Ambiental/métodos , Ésteres/análise , Herbicidas/análise , Oryza/química , Pirazóis/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida , Meia-Vida , Cinética , Espectrometria de Massas em TandemRESUMO
An effective, nondestructive, and universal strategy to homogeneously modify freestanding carbon nanotube (CNT) films with various active species is essential to achieve functional electrodes for flexible electrochemical energy storage, which is challenging and has attracted considerable research interest. In this work, a generalizable concept, to utilize silicon oxide as the intermediate to uniformly decorate various metal sulfide nanostructures throughout CNT films is reported. Taking nickel sulfide nanosheet/CNT (NS/CNT) films, in which the NS nanosheets are homogeneously attached on the intact few-walled CNTs, as an example, the sheet-like NS provides sufficient active sites for redox reactions and the CNT network acts as an efficient electron highway, maintaining the structural integrity of the composite and also buffering volume changes. These merits enable NS/CNT films to meet the requirements of versatile energy storage applications. When used for supercapacitors, a high specific capacitance (2699.7 F g-1 /10 A g-1 ), outstanding rate performance at extremely high rates (1527 F g-1 /250 A g-1 ), remarkable cycling stability, and excellent flexibility can be achieved, among the best performance so far. Moreover, it also delivers excellent performance in the storage of Li and Na ions, meaning it is also potentially suitable for Li/Na ion batteries.
RESUMO
The evolved resistance of Myosoton aquaticum L. to acetolactate synthase (ALS) inhibitors is well established, but most research has focused on target-site resistance, while nontarget-site resistance remains neglected. Here, we investigated mechanisms of the latter. The pretreatment with the P450 inhibitor malathion significantly increased the sensitivity of resistant plants to tribenuron-methyl. The rapid P450-mediated tribenuron-methyl metabolism in resistant plants was confirmed by LC-MS/MS analysis. Besides, GST activity was higher among resistant than susceptible individuals. The next transcriptome analysis generated 544,102,236 clean reads from RNA sequencing libraries. De novo assembly yielded 102,529 unigenes with an average length of 866 bp, annotated across seven databases. Digital gene expression selected 25 differentially expressed genes, further validated with qRT-PCR. Three P450 genes, two GST genes, two glucosyltransferase genes, four ABC transporter genes, and four additional contigs were constitutively up-regulated in resistant individuals. Overall, our research confirmed that enhanced herbicide metabolism drives tribenuron-methyl resistance in M. aquaticum.
Assuntos
Sulfonatos de Arila/metabolismo , Caryophyllaceae/genética , Caryophyllaceae/metabolismo , Resistência a Herbicidas , Herbicidas/metabolismo , Proteínas de Plantas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sulfonatos de Arila/farmacologia , Caryophyllaceae/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Herbicidas/farmacologia , Proteínas de Plantas/metabolismoRESUMO
Resistance to the acetyl-coenzyme A carboxylase (ACCase)- and acetolactate synthase (ALS)- inhibiting herbicides in shortawn foxtail (Alopecurus aequalis) has been reported in wheat fields of eastern China. To better understand the distribution of the resistant populations and the occurrence of the target-site mutations, 74 populations collected from Anhui, Jiangsu and Shandong province were surveyed, and the ACCase and ALS gene fragments, encompassing all the documented mutant codon positions, were amplified and sequenced. Plants from 37 and 34 populations survived fenoxaprop-P-ethyl and mesosulfuron-methyl treatment at 62.1â¯g a.i. ha-1 and 9â¯g a.i. ha-1 respectively, with different survival rates. Twenty-seven populations exhibited multiple resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl. Whole-plant dose-response experiments showed that the resistance index ranged from 6.2 to 167.8 for fenoxaprop-P-ethyl, and from 7.8 to 139.5 for mesosulfuron-methyl. Four ACCase (I1781L, I2041N, I2041T and D2078G) and four ALS (P197R, P197S, P197T and W574â¯L) resistance mutations were detected respectively. Individuals containing two amino acid substitutions were also found. D2078G and W574â¯L were predominant ACCase and ALS gene mutations respectively. This study has shown that fenoxaprop-P-ethyl and mesosulfuron-methyl resistance was prevalent in A. aequalis in eastern China, and target site mutations in the ACCase and ALS gene were one of the most common mechanisms.