Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(18): 7212-7219, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38660946

RESUMO

Extracellular vesicles (EVs) are available in various biological fluids and have highly heterogeneous sizes, origins, contents, and functions. Rapid enrichment of high-purity EVs remains crucial for enhancing research on EVs in tumors. In this work, we present a magnetic nanoparticle-based microfluidic platform (ExoCPR) for on-chip isolation, purification, and mild recovery of EVs from cell culture supernatant and plasma within 29 min. The ExoCPR chip integrates bubble-driven micromixers and immiscible filtration assisted by surface tension (IFAST) technology. The bubble-driven micromixer enhances the mixing between immunomagnetic beads and EVs, eliminating the need for manual pipetting or off-chip oscillatory incubation. The high-purity EVs were obtained after passing through the immiscible phase interface where hydrophilic or hydrophobic impurities nonspecifically bound to SIMI were removed. The ExoCPR chip had a capture efficiency of 75.8% and a release efficiency of 62.7% for model EVs. We also demonstrated the powerful performance of the ExoCPR in isolating EVs from biological samples (>90% purity). This chip was further employed in clinical plasma samples and showed that the number of GPC3-positive EVs isolated from hepatocellular carcinoma patients was significantly higher than that of healthy individuals. This ExoCPR chip may provide a promising tool for EV-based liquid biopsy and other fundamental research.


Assuntos
Vesículas Extracelulares , Nanopartículas de Magnetita , Vesículas Extracelulares/química , Humanos , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip
2.
Angew Chem Int Ed Engl ; 63(18): e202402245, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38462504

RESUMO

Gel-polymer electrolyte (GPE) is a pragmatic choice for high-safety sodium batteries but still plagued by interfacial compatibility with both cathode and anode simultaneously. Here, salt-in-polymer fibers with NaF salt inlaid in polylactide (PLA) fiber network was fabricated via electrospinning and subsequent in situ forming gel-polymer electrolyte in liquid electrolytes. The obtained PLA-NaF GPE achieves a high ion conductivity (2.50×10-3 S cm-1) and large Na+ transference number (0.75) at ambient temperature. Notably, the dissolution of NaF salt occupies solvents leading to concentrated-electrolyte environment, which facilitates aggregates with increased anionic coordination (anion/Na+ >1). Aggregates with higher HOMO realize the preferential oxidation on the cathode so that inorganic-rich and stable CEI covers cathode' surface, preventing particles' breakage and showing good compatibility with different cathodes (Na3V2(PO4)3, Na2+2xFe2-x(SO4)3, Na0.72Ni0.32Mn0.68O2, NaTi2(PO4)3). While, passivated Na anode induced by the lower LUMO of aggregates, and the lower surface tension between Na anode and PLA-NaF GPE interface, leading to the dendrites-free Na anode. As a result, the assembled Na || Na3V2(PO4)3 cells display excellent electrochemical performance at all-climate conditions.

3.
Angew Chem Int Ed Engl ; 62(52): e202315076, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37960950

RESUMO

Polymer electrolytes provide a visible pathway for the construction of high-safety quasi-solid-state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strategy is proposed to accelerate Na-ion conduction via the cooperation of polymer-salt, ionic liquid, and electron-rich additive. Especially, PVDF-HFP and NaTFSI salt acted as the framework to stably accommodate all the ingredients. An ionic liquid (Emim+ -FSI- ) softened the polymer chains through a weakening molecule force and offered additional liquid pathways for ion transport. Physicochemical characterizations and theoretical calculations demonstrated that electron-rich Nerolin with π-cation interaction facilitated the dissociation of NaTFSI and effectively restrained the competitive migration of large cations from EmimFSI, thus lowering the energy barrier for ion transport. The strategy resulted in a thin F-rich interphase dominated by NaTFSI salt's decomposition, enabling rapid Na+ transmission across the interface. These combined effects resulted in a polymer electrolyte with high ionic conductivity (1.37×10-3  S cm-1 ) and tNa+ (0.79) at 25 °C. The assembled cells delivered reliable rate capability and stability (200 cycles, 99.2 %, 0.5 C) with a good safety performance.

4.
Plants (Basel) ; 12(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37631166

RESUMO

Arbuscular mycorrhizal fungi (AMF) have the function of promoting water absorption for the host plant, whereas the role of easily extractable glomalin-related soil protein (GRSP), an N-linked glycoprotein secreted by AMF hyphae and spores, is unexplored for citrus plants. In this study, the effects on plant growth performance, root system characteristics, and leaf water status, along with the changes of mineral element content and relative expressions of tonoplast intrinsic protein (TIP) genes in lemon (Citrus limon L.) seedlings, were investigated under varying strengths of exogenous EE-GRSP application under potted conditions. The results showed that 1/2, 3/4, and full-strength exogenous EE-GRSP significantly promoted plant growth performance, as well as increased the biomass and root system architecture traits including root surface area, volume, taproot length, and lateral root numbers of lemon seedlings. The four different strengths of exogenous GRSP displayed differential effects on mineral element content: notably increased the content of phosphorus (P) and iron (Fe) in both leaves and roots, as well as magnesium (Mg) and zinc (Zn) content in the roots, but dramatically decreased the content of calcium (Ca) and manganese (Mn) in the roots, as well as Zn and Mn in the leaves. Exogenous EE-GRSP improved leaf water status, manifesting as decreases in leaf water potential, which was associated with the upregulated expressions of tonoplast intrinsic proteins (TIPs), including ClTIP1;1, ClTIP1;2, ClTIP1;3, ClTIP2;1, ClTIP2;2, ClTIP4;1, and ClTIP5;1 both in leaves and roots, and TIPs expressions exhibited diverse responses to EE-GRSP application. It was concluded that exogenous EE-GRSP exhibited differential responses on plant growth performance, which was related to its strength, and the effects were associated with nutrient concentration and root morphology, especially in the improvement in water status related to TIPs expressions. Therefore, EE-GRSP can be used as a biological promoter in plant cultivation, especially in citrus.

5.
Anal Chem ; 95(7): 3569-3576, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36661256

RESUMO

Exosomes are important participants in numerous pathophysiological processes and hold promising application value in cancer diagnosis, monitoring, and prognosis. However, the small size (40-160 nm) and high heterogeneity of exosomes make it still challenging to enrich exosomes efficiently from the complex biological fluid microenvironment, which has largely restricted their downstream analysis and clinical application. In this work, we introduced a novel method for rapid isolation and mild release of exosomes from the cell culture supernatant. A Strep-tag II-based immunomagnetic isolation (SIMI) system was constructed by modifying the capture antibodies onto magnetic nanoparticles through specific and reversible recognition between Strep-Tactin and Strep-tag II. Due to their high affinity and binding selectivity, exosomes could be isolated within 38 min with an isolation efficiency of 82.5% and a release efficiency of 62%. Compared with the gold-standard ultracentrifugation, the SIMI system could harvest nearly 59% more exosomes from the 293 T cell culture medium with shorter isolation time and higher purity. In addition, cellular uptake assay indicated that exosomes released from magnetic nanoparticles could maintain their high biological activity. These superior characteristics show that this novel method is a fast, efficient, and nondestructive exosome isolation tool and thus could potentially be further utilized in various exosome-related applications, e.g., disease diagnosis and drug delivery.


Assuntos
Exossomos , Humanos , Exossomos/metabolismo , Separação Imunomagnética , Ultracentrifugação , Oligopeptídeos/metabolismo
6.
Adv Mater ; 35(15): e2203547, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36649977

RESUMO

Sodium storage batteries are one of the ever-increasing next-generation large-scale energy storage systems owing to the abundant resources and low cost. However, their viability is severely hampered by dendrite-related hazards on anodes. Herein, a novel ultrathin (8 µm) exterior-nonporous separator composed of honeycomb-structured fibers is prepared for homogeneous Na deposition and suppressed dendrite penetration. The unhindered ion transmission greatly benefits from honeycomb-structured fibers with huge electrolyte uptake (376.7%) and the polymer's inherent transport ability. Additionally, polar polymer chains consisting of polyethersulfone and polyvinylidene customize the highly aggregated solvation structure of electrolytes via substantial solvent immobilization, facilitating ion-conductivity-enhanced inorganic-rich solid-electrolyte interphase with remarkable interface endurance. With the reliable mechanical strength of the separator, the assembled sodium-ion full cell delivers significantly improved energy density and high safety, enabling stable operation under cutting and rolling. The as-prepared separator can further be generalized to lithium-based batteries for which apparent dendrite inhibition and cyclability are accessible and demonstrates its potential for practical application.

7.
Analyst ; 147(21): 4876-4887, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36155591

RESUMO

As the gold standard for nucleic acid detection, full-process polymerase chain reaction (PCR) analysis often falls into the dilemma of complex workflow, time-consuming, and high equipment costs. Therefore, we designed and optimized a DNA quantification microfluidic system by strategically integrating sample pretreatment and a smartphone-readable gradient plasmonic photothermal (GPPT) continuous-flow PCR (CF-PCR). Through preloading and sequential injection of immiscible extraction reagents, combined with magnetic bead (MB) manipulation, the microfluidic chip successfully purified and concentrated 100 µL of HBV-DNA spiked plasma into a 20-µL purified sample within 14 minutes. With a digital PCR platform, the optimized experiments showed that the DNA extraction efficiency can reach 69% at an immiscible reagent configuration ratio of 10 : 10 : 1 : 12 : 2 (sample : lysis/binding buffer : MB : silicone oil : eluent) and a flow rate of 25 µL min-1. For the first time, we used gold nanorod (AuNR)-doped PDMS to prepare a CF-PCR submodule for the amplification of a 40 µL PCR mixture. Due to the plasmonic photothermal effect of AuNRs and the gradient intensity of an expanded laser spot, the PCR thermal gradient was formed on a coin-sized area. The compact annular thermal-microfluidic layout, optimized DNA dye concentration, and chip transmittance synergistically enable a rarely reported smartphone-based fluorescence CF-PCR, greatly simplifying thermal control and detection setup. Prototype construction and validation experiments show that the microsystem can complete the sample-to-answer quantification of HBV-DNA with a dynamic linear range from 1.2 × 101 to 1.2 × 106 copies per µL in ∼37 minutes. This novel microfluidic solution effectively bridges the technical gap between the CF-PCR, sample pretreatment and result characterization, making the workflow standardized and rapid and requiring <15% of the commercial instrument cost. The simplicity, rapidity and low cost of this work make it promising for applications in decentralized laboratories and low-resource settings.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , DNA Viral/genética , Smartphone , Óleos de Silicone , Reação em Cadeia da Polimerase , Indicadores e Reagentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA