Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
2.
J Hazard Mater ; 479: 135700, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241365

RESUMO

The study of antibiotic resistance in the silage microbiome has attracted initial attention. However, the influences of lactic acid bacteria inoculants and dry matter (DM) content on antibiotic resistance genes (ARGs) reduction in whole-plant corn silage remain poorly studied. This study accessed the ARGs' risk and transmission mechanism in whole-plant corn silage with different DM levels and treated with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. The macrolide and tetracycline were the main ARGs in corn silage. The dominant species (Lent. buchneri and Lactobacillus acetotolerans) were the main ARGs carriers in whole-plant corn silage. The application of Lent. buchneri increased total ARGs abundance regardless of corn DM. Whole-plant corn silage with 30 % DM reduced the abundances of integrase and plasmid compared with 40 % DM. The correlation and structural equation model analysis demonstrated that bacterial community succession, resulting from changes in DM content, was the primary driving factor influencing the ARGs distribution in whole-plant corn silage. Interestingly, whole-plant corn silage inoculated with Lent. buchneri reduced abundances of high-risk ARGs (mdtG, mepA, tetM, mecA, vatE and tetW) by regulating pathogens (Escherichia coli), mobile genetic elements (MGEs) genes (IS3 and IS1182), and this effect was more pronounced at 30 % DM level. In summary, although whole-plant corn silage inoculated with Lent. buchneri increased the total ARGs abundance at both DM levels, it decreased the abundance of high-risk ARGs by reducing the abundances of the pathogens and MGEs, and this effect was more noticeable at 30 % DM level.


Assuntos
Silagem , Zea mays , Zea mays/microbiologia , Silagem/microbiologia , Genes Bacterianos , Sequências Repetitivas Dispersas , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Lactobacillus/genética , Lactobacillus/efeitos dos fármacos , Fermentação
3.
Appl Environ Microbiol ; 90(10): e0098624, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39324818

RESUMO

High-throughput metagenomic sequence technology was employed to evaluate changes in microbial community composition and carbohydrate-active enzymes encoding gene enrichment status in Elymus nutans silages to altitudinal gradients in the world's highest alpine region of Qinghai-Tibetan Plateau (QTP). E. nutans were collected from three different altitudes in QTP: 2,600 m (low altitude), 3600 m (moderate altitude), and 4,600 m [high (H) altitude], and ensiled for 7, 14, 30, and 60 d. Results indicated an improvement in silage quality with the increasing altitude, although the acetic acid concentration and dry matter loss were greater in H altitude silages after 30 d of ensiling. Harmful bacteria or potential pathogens predominated in the microbial community on d 7 and 14 of fermentation, while genera belonging to lactic acid bacteria gradually became the main microorganisms with the increasing altitude on d 30 and 60 of ensiling. The abundance of carbohydrate-active enzymes genes responsible for macromolecular carbohydrate degradation in silage increased with increasing altitude, and those genes were mainly carried by Lactiplantibacillus and Pediococcus at 30 and 60 d of ensiling. The abundance of key enzymatic genes associated with glycolysis and organic acid production in carbohydrate metabolism pathway was higher in H altitude silages, and Lactiplantibacillus and Pediococcus were also the main hosts after 30 d of silage fermentation, except for the fact that acetic acid production was also related to genera Leuconostoc, Latilactobacillus, and Levilactobacillus. IMPORTANCE: The fermentation quality of Elymus nutans silage was getting better with the increase of altitude in the Qinghai-Tibetan Plateau. The abundance of hosts carrying carbohydrate-active enzymes genes and key enzyme genes related to organic acid production increased with increasing altitude during the later stages of fermentation. Lactiplantibacillus and Pediococcus were the core microorganisms responsible for both polysaccharide hydrolysis and silage fermentation in the late stage of ensiling. This study provided insights on the influence of different altitudes on the composition and function of silage microbiome in the Qinghai-Tibetan Plateau, and provided a reference approach for improving the quality and controllability of silage production in high altitude areas of the Qinghai-Tibetan Plateau.


Assuntos
Altitude , Bactérias , Elymus , Microbiota , Silagem , Silagem/microbiologia , Silagem/análise , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Elymus/microbiologia , Elymus/genética , Fermentação , Tibet , Ácido Acético/metabolismo
4.
J Anim Sci Biotechnol ; 15(1): 107, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107819

RESUMO

BACKGROUND: Silage is widely used to formulate dairy cattle rations, and the utilization of antibiotics and methane emissions are 2 major problems for a sustainable and environmentally beneficial ruminant production systems. Bacteriocin has received considerable attention because of its potential as an alternative to antibiotics in animal husbandry. However, the impact of bacteriocin-producing lactic acid bacteria on the microbiological conversion process of whole-plant corn silage and rumen fermentation remains limited. The purpose of this study was to assess the effect of 2 class IIa bacteriocin-producing strains Lactiplantibacillus plantarum ATCC14917 and CICC24194 on bacterial community composition and ensiling profiles of whole-plant corn silage and its in vitro rumen fermentation, microbiota, and CH4 emissions. RESULTS: Both bacteriocin-producing strains increased the lactic acid concentration in silage fermented for 7 d, whereas the lowest lactic acid was observed in the ATCC14917 inoculated silage fermented for 90 d (P < 0.05). The highest DM content was observed in the CICC24194 treatment (P < 0.05), and the silages treated with both strains had the lowest DM loss (P < 0.05). Bacteriocin-producing strains promoted the growth of Levilactobacillus brevis on d 60 of ensiling. In addition, treatment with bacteriocin-producing strains increased the in vitro DM digestibility (P < 0.05) and decreased the CH4 production (P < 0.05). The results of random forest and clustering analyses at the genus level showed that ATCC14917 increased the relative abundance of the influential variable Bacillus compared to that in the control group, whereas CICC24194 decreased the relative abundance of the influential variable Ruminococcaceae UCG-005. The CICC24194 treatment had the lowest total bacterial, fungal, protozoan, and methanogen populations (P < 0.05). CONCLUSIONS: Both class IIa bacteriocin-producing L. plantarum strains improved the fermentation quality of whole-plant corn silage by regulating the bacterial community composition during ensiling, with CICC24194 being the most effective. Both bacteriocin-producing strains mitigated CH4 production and improved digestibility by modulating the interactions among rumen bacteria, protozoa, methanogens, and the composition of fibrolytic bacteria.

5.
Animals (Basel) ; 14(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39199914

RESUMO

The gut microbiota is a diverse and complex population, and it has a key role in the host's health and adaptability to the environment. The present study investigated the fecal bacterial community of wild grazing (WG) and domestic grazing (DG) yaks on natural grazing pastures, analyzing the gut microbiota using 16S rRNA sequencing to assess bacterial diversity. A total of 48 yak fecal samples were selected from two different grazing habitats. The DG group had more crude proteins and non-fiber carbohydrates. The WG group had more OM, insoluble dietary fiber such as NDF, ADF, ether extract, and TC. There were 165 and 142 unique operational taxonomic units (OTUs) in the WG and DG groups, respectively. Shannon index analysis revealed a higher bacterial diversity in the WG group than in the DG group. At the phylum level, Firmicutes were the dominant bacterial taxa in both groups. The relative abundance of Firmicutes in the WG group was higher than in the DG group. At the family level, the WG group had a significantly higher abundance of Ruminococcaceae (p < 0.001) and Rikenellaceae (p < 0.001) than the DG group. The abundances of Alloprevotella and Succinivibrio were more pronounced in the DG group than in the WG group at the genus level. This study presents a novel understanding of the bacterial communities of ruminants and their potential applications for livestock production.

6.
J Hazard Mater ; 477: 135161, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39038378

RESUMO

This study used lactic acid bacteria with high antioxidative properties to screen for strains capable of reducing hexavalent chromium [Cr (VI)] in their culturing supernatants. The strain Pediococcus acidilactici 13-7 exhibited potent Cr (VI)-reducing capability and remarkable resistance to Cr (VI) even at concentration as high as 24 mM. Comparative genomics analysis revealed a unique gene, ChrR, associated with Cr (VI) reduction in this strain, distinguishing it from four reference strains of P. acidilactici. The proteomic investigation identified proteins linked to the ChrR gene, such as nqo1, frdA, and gshR, indicating significant enrichment in redox-related functions and oxidative phosphorylation pathways. These findings suggest that P. acidilactici 13-7 possesses superior electron transfer capacity compared to other strains, making it more adaptable under highly oxidative conditions by modulating the external environment to mitigate oxidative stress. Collectively, the results demonstrated the potential application of this lactic acid bacterial strain for bioremediation of heavy metals by its ability to reduce Cr (VI), and shed light on the molecular mechanisms underlying Cr (VI) reduction of the strain P. acidilactici 13-7.


Assuntos
Biodegradação Ambiental , Cromo , Oxirredução , Pediococcus acidilactici , Proteômica , Cromo/metabolismo , Pediococcus acidilactici/metabolismo , Genômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Sci Total Environ ; 926: 172114, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38561127

RESUMO

The microbial hosts of antibiotic resistance genes (ARGs) found epiphytically on plant materials could grow and flourish during silage fermentation. This study employed metagenomic analysis and elucidated the occurrence and transmission mechanisms of ARGs and their microbial hosts in whole-crop corn silage inoculated with homofermentative strain Lactiplantibacillus plantarum or heterofermentative strain Lentilactobacillus buchneri ensiled under different temperature (20 and 30 °C). The results revealed that the corn silage was dominated by Lactobacillus, Leuconostoc, Lentilactobacillus, and Latilactobacillus. Both the ensiling temperature and inoculation had greatly modified the silage microbiota. However, regardless of the ensiling temperature, L. buchneri had significantly higher ARGs, while it only exhibited significantly higher mobile genetic elements (MGEs) in low temperature treatments. The microbial community of the corn silage hosted highly diverse form of ARGs, which were primarily MacB, RanA, bcrA, msbA, TetA (58), and TetT and mainly corresponded to macrolides and tetracyclines drug classes. Plasmids were identified as the most abundant MGEs with significant correlation with some high-risk ARGs (tetM, TolC, mdtH, and NorA), and their abundances have been reduced by ensiling process. Furthermore, higher temperature and L. buchneri reduced abundances of high-risk ARGs by modifying their hosts and reduced their transmission in the silage. Therefore, ensiling, L. buchneri inoculation and higher storage temperature could improve the biosafety of corn silage.


Assuntos
Lactobacillales , Silagem , Silagem/análise , Silagem/microbiologia , Zea mays/microbiologia , Lactobacillales/genética , Antibacterianos , Temperatura , Fermentação
8.
Microb Biotechnol ; 17(4): e14454, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38568756

RESUMO

This study investigates the effectiveness of an exopolysaccharide (EPS)-producing strain (Lactiplantibacillus plantarum L75) alone or in combination with Saccharomyces cerevisiae on the fermentation characteristics, antioxidant capacities and microbial community successions of oat silage stored at various temperatures. A rapid decrease in pH and lactic acid accumulation was observed in silages treated with L. plantarum and S. cerevisiae (LS) as early as 3 days of ensiling (p < 0.05). Over the ensiling period of 7-60 days, L. plantarum (L)-inoculated groups showed the lowest pH, lowest ammonia nitrogen and the highest amount of lactic acid regardless of the storage temperatures. When the oat silage was stored at 15°C, LS-inoculated group exhibited a higher superoxide dismutase (SOD) activity than control and L-inoculated group. Furthermore, the proportion of Lactiplantibacillus in the combined inoculation group increased by 65.42% compared to the L-inoculated group (33.26%). Fungal community data revealed abundant Penicillium carneum in the control and L-inoculated groups stored at 15°C. Conclusively, these results showed that combined inoculation of L. plantarum L75 and S. cerevisiae improved the fermentation quality of oat silage at 15°C, thus proposing a technique for enhancing the fermentation quality of silage in regions with low temperatures during harvest season.


Assuntos
Lactobacillus plantarum , Silagem , Silagem/microbiologia , Saccharomyces cerevisiae , Lactobacillus , Avena , Fermentação , Temperatura , Ácido Láctico
9.
Appl Microbiol Biotechnol ; 108(1): 257, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456919

RESUMO

Sorghum forage was ensiled for 90 days at two dry matter (DM) contents (27 vs. 39%) without or with Lactiplantibacillus plantarum inoculation. On day 90 of fermentation, silages were sampled to assess the microbial community dynamics and metabolome profile. L. plantarum inoculation improved silage quality, as shown by a lower pH and greater acetic acid concentration. Loss of DM remained unaffected by L. plantarum inoculation but was greater in low- vs. high-DM sorghum silages (14.4 vs. 6.62%). The microbiome analysis revealed that Pseudomonas congelans represented the dominant species of the epiphytic microbiota in both low- and high-DM sorghum forage before ensiling. However, L. buchneri represented the dominant species at the end of ensiling. Ensiling fermentation resulted in distinct metabolic changes in silages with varying DM content. In low-DM silages, ensiling fermentation led to the accumulation of 24 metabolites and a reduction in the relative concentration of 13 metabolites. In high-DM silages, ensiling fermentation resulted in an increase in the relative concentration of 26 metabolites but a decrease in the concentration of 8 metabolites. Compared to non-inoculated silages, L. plantarum inoculation resulted in an increased concentration of 3 metabolites and a reduced concentration of 5 metabolites in low-DM silages. Similarly, in high-DM silages, there was an elevation in the relative concentration of 3 metabolites, while a decrease in 7 other metabolites. Ten metabolites with bio-functional activity were identified, including chrysoeriol, isorhamnetin, petunidin 3-glucoside, apigenin, caffeic acid, gallic acid, p-coumaric acid, trans-cinnamic acid, herniarin, and 3,4-dihydroxy-trans-cinnamate. This study presents a comprehensive analysis of microbiome and metabolome profiling of sorghum forage during ensiling as a function of DM content and L. plantarum inoculation, with a particular emphasis on identifying metabolites that may possess bio-functional properties. KEY POINTS: • DM loss was not different by L. plantarum but higher in low- vs. high-DM silage. • L. buchneri dominated ensiling, regardless of DM level. • 10 metabolites with bio-functional activity were identified.


Assuntos
Microbiota , Sorghum , Silagem , Lactobacillus/metabolismo , Zea mays/metabolismo , Metaboloma , Fermentação
10.
Food Funct ; 15(4): 2022-2037, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38289370

RESUMO

Probiotics are known for their beneficial effects on improving intestinal function by alleviating the gut microbial diversity. However, the influences of antioxidant lactic acid bacteria (LAB) and anti-inflammatory Clostridium butyricum (CB) on ameliorating enteritis remain unclear. In this study, we investigated the effects of the antioxidant strain Lactiplantibacillus plantarum AS21 and CB alone, or in combination on intestinal microbiota, barrier function, oxidative stress and inflammation in mice with DSS-induced colitis. All probiotic treatments relieved the pathological development of colitis by improving the integrity of the intestinal mucosal barrier and the length of the colon. The probiotics also suppressed inflammation and oxidative stress by improving gut short-chain fatty acids and inhibiting the p38-MAPK/NF-κB pathway in colon tissues. According to the meta-network analysis, three distinct modules containing sensitive OTUs of the gut bacterial community specific to the control, DSS and DSS + probiotics groups were observed, and unlike the other two modules, Lachnospiraceae and Clostridia dominated the sensitive OTUs in the DSS + probiotics group. In addition, administration of the present probiotics particularly increased antioxidant and anti-inflammatory microbes Muribaculaceae, Bifidobacterium, Prevotellaceae and Alloprevotella. Furthermore, combined probiotic strain treatment showed a more stable anti-colitis effect than a single probiotic strain. Collectively, the present probiotics exhibited protective effects against colitis by suppressing the inflammation and oxidative damage in the colon, improving the gut microbiota and their functions, and consequently preventing the gut leak. The results indicate that the combination of the antioxidant properties of LAB and the anti-inflammatory properties of CB as nutritional intervention and adjuvant therapy could be an effective strategy to prevent and alleviate colitis.


Assuntos
Clostridium butyricum , Colite , Microbioma Gastrointestinal , Lactobacillales , Lactobacillus plantarum , Probióticos , Camundongos , Animais , Antioxidantes/farmacologia , Colite/terapia , Colite/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Bacteroidetes , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Colo/metabolismo , Camundongos Endogâmicos C57BL
11.
J Anim Sci Biotechnol ; 15(1): 9, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247012

RESUMO

BACKGROUND: Milk synthesis in lactating animals demands high energy metabolism, which results in an increased production of reactive oxygen metabolites (ROM) causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress (OS) on the animals. To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation, a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum. METHODS: Twenty-four Guanzhong dairy goats (38.1 ± 1.20 kg) were randomly assigned to two dietary treatments: one containing silage inoculated with L. plantarum MTD/1 (RSMTD-1), and the other containing silage inoculated with high antioxidant activity L. plantarum 24-7 (ES24-7). RESULTS: ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1. The ES24-7 diet elevated the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in milk, serum, and feces of lactating goats (with the exception of T-AOC in milk). Additionally, the diet containing ES24-7 inoculated silage enhanced casein yield, milk free fatty acid (FFA) content, and vitamin A level in the goats' milk. Furthermore, an increase of immunoglobulin (Ig)A, IgG, IgM, interleukin (IL)-4, and IL-10 concentrations were observed, coupled with a reduction in IL-1ß, IL-2, IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α concentrations in the serum of lactating goats fed ES24-7. Higher concentrations of total volatile fatty acid (VFA), acetate, and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage. Moreover, the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2 (NFE2L2), beta-carotene oxygenase 1 (BCO1), SOD1, SOD2, SOD3, GPX2, CAT, glutathione-disulfide reductase (GSR), and heme oxygenase 1 (HMOX1) genes in the mammary gland, while decreased the levels of NADPH oxidase 4 (NOX4), TNF, and interferon gamma (IFNG). CONCLUSIONS: These findings indicated that feeding L. plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.

12.
Microbiol Spectr ; 12(1): e0251623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054628

RESUMO

IMPORTANCE: On the Qinghai-Tibet Plateau (QTP), feed shortages are common due to cold environmental conditions and the short growing season of crops. Therefore, effective preservation, such as the ensiling of local forage, is becoming increasingly important to balance the seasonal imbalance between the forage supply and the nutritional needs of domestic animals in this area. However, the structure of the microbial community of the forage, which is influenced by climatic conditions such as altitude differences, has a major impact on the fermentation quality and microbial succession of the ensiled forage. Therefore, we investigated microbial community dynamics, co-occurrence, functional shifts, and natural fermentation profiles of Elymus nutans silage as a function of altitudinal gradients. Results show that silage from Chenduo at higher elevations has better fermentation quality and higher abundance of Lacticaseibacillus and Levilactobacillus than ensiled forage from other regions. This work may contribute to guiding for silage production in QTP.


Assuntos
Elymus , Microbiota , Animais , Fermentação , Silagem/análise , Lactobacillaceae
13.
J Environ Manage ; 347: 119235, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806267

RESUMO

Silage as the main forage for ruminants could be a reservoir for antibiotic resistance genes (ARGs) through which these genes got access into the animals' system causing a latent health risk. This study employed metagenomics and investigated the ARGs' fate and transmission mechanism in high-moisture alfalfa silage treated with formic acid bactericide. The results showed that there were 22 ARGs types, in which multidrug, macrolide-lincosamide-streptogramine, bacitracin, beta-lactam, fosmidomycin, kasugamycin, and polymycin resistance genes were the most prevalent ARGs types in the ensiled alfalfa. The natural ensiling process increased ARGs enrichment. Intriguingly, after 5 days of ensiling, formic acid-treated silage reduced ARGs abundances by inhibiting host bacterial and plasmids. Although formic acid bactericide enhanced the fermentation characteristics of the high-moisture alfalfa by lowering silage pH, butyric acid concentration, dry matter losses and proteolysis, it increased ARGs abundances in alfalfa silage owing to increases in abundances of ARGs carriers and transposase after 90 days of ensiling. Notably, several pathogens like Staphylococcus, Clostridium, and Pseudomonas were inferred as potential ARGs hosts in high-moisture alfalfa silage, and high-moisture alfalfa silage may harbor a portion of the clinical ARGs. Fundamentally, microbes were distinguished as the foremost driving factor of ARGs propagation in ensiling microecosystem. In conclusion, although formic acid bactericide improved the fermentation characteristics of high-moisture alfalfa during ensiling and reduced ARGs enrichment at the initial ensiling stage, it increased ARGs enrichment at the end of ensiling.


Assuntos
Antibacterianos , Silagem , Animais , Silagem/análise , Silagem/microbiologia , Antibacterianos/farmacologia , Medicago sativa , Formiatos/farmacologia , Fermentação
14.
Environ Pollut ; 338: 122671, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788797

RESUMO

Antibiotic resistance genes (ARGs) are one of the emerging contaminants posing a great deal of hazardous risk to public health. This study employed metagenomics and deciphered the potential risk of the antibiotic resistome and their vertical transfer to ensiled whole-crop corn silage harvested from six climate zones: 1. Warm temperate-fully humid-hot summer (Cfa), 2. Arid-desert-cold arid (BWk), 3. Snow-desert-cold summer (Dwc), 4. Snow-desert-hot summer (Dwa), 5. Arid-steppe-cold arid (BSk), and 6. Equatorial-desert (Aw) based on the Köppen-Geiger climate classification in China. The findings demonstrate a high diversity of ARGs, which is related to the drug classes of tetracycline, ciprofloxacin, lincosamide, fosfomycin, and beta lactam. Resistome variations are mostly related to variations in microbial composition and fermentation characteristics of the silages from different climate zones, which are indirectly influenced by environmental conditions. The most dominating ARGs in corn silage were tetM, acrA, H-NS, lnuA, emrR, and KpnG, which is primarily hosted by Klebsiella and Lactobacilli. There were 5 high-risk ARGs (tetM, bacA, SHV-1, dfrA17, and QnrS1) in silage from different climate zones, and the tetM was the most prevalent high-risk ARG. However, throughout the ensiling process, the abundance of ARGs, and mobile ARGs were reduced. The resistome contamination in silage from Tibet (Dwc) with high altitude and harsh environment was relatively low due to the low variety and abundance of ARGs, the low abundance of mobile ARGs and high-risk ARGs. In addition, most of the bacteria responsible for the silage fermentation were also found to be the hosts to the ARGs, although their abundance decreased after 90 d of silage fermentation. Hence, we alert the existence of ARGs-related biosafety risk in silages and call for more attention to the silage ARGs, their hosts, and mobile genetic elements in order to curtail their possible risk to public health.


Assuntos
Antibacterianos , Zea mays , Antibacterianos/farmacologia , Silagem/análise , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
15.
Arch Anim Nutr ; 77(5): 323-341, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37726873

RESUMO

Silage fermentation is a complicated biochemical process involving interactions between microbes and metabolites. However, the overall metabolome feature of ensiled forage and its response to lactic acid bacteria inoculation is poorly understood. Hence, in this study metabolome profiles of whole-plant corn silage inoculated with or without Lactiplantibacillus plantarum were characterised via solid-phase microextraction/gas chromatography/mass spectrometry (SPME-GC-MS), gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS), and Liquid chromatography/Q Exactive HFX mass spectrometry (LC-QE-MS/MS) analysis. There were 2087 identified metabolites including 1143 reliably identified metabolites in fresh and ensiled whole-plant corn. After ensiling, the increased metabolites in whole-plant corn were mainly composed of organic acids, volatile organic compounds (VOC), benzene and substituted derivatives, carboxylic acids and derivatives, fatty acyls, flavonoids, indoles and derivatives, organooxygen compounds (including amines and amides), phenols, pyridines and derivatives, and steroids and steroid derivatives, which includes neurotransmitters and metabolites with aromatic, antioxidant, anti-inflammatory, and antimicrobial activities. Phenylacetaldehyde was the most abundant aromatic metabolite after ensiling. L-isoleucine and oxoproline were the major free amino acids in silage. Ensiling markedly increased the relative abundances of 3-phenyllactic acid, chrysoeriol, 6-O-acetylaustroinulin, acetylcholine, γ-aminobutyric acid, pyridoxine, and alpha-linoleic acid. Inoculation with L. plantarum remarkably changed silage VOC composition, and essential amino acids, 3-phenyllactic acid, and cinnamaldehyde compared with untreated silage. The present study does not only provide a deeper insight into metabolites of the ensiled whole-plant corn but also reveals metabolites with specific biological functions that could be much helpful in screening novel lactic acid bacteria to well ensile forages. Inoculation with L. plantarum significantly affects the metabolome in ensiled whole-plant corn.


Assuntos
Silagem , Compostos Orgânicos Voláteis , Animais , Silagem/análise , Zea mays/química , Ração Animal/análise , Espectrometria de Massas em Tandem/veterinária , Dieta/veterinária , Metaboloma , Fermentação
16.
Front Physiol ; 14: 1247410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565136

RESUMO

The experiment was conducted to investigate the effects of dietary leucine on growth, antioxidant capacity, immune response, and inflammation in juvenile yellow catfish. Five diets were formulated to contain five dietary leucine levels: 12.00 (control), 19.00, 26.00, 33.00, and 40.00 g kg-1. Each diet was randomly assigned to triplicate groups of 30 juvenile fish (5.02 ± 0.15 g) twice daily to apparent satiation for 56 days. Weight gain rate, specific growth rate, and activities of liver superoxide dismutase, glutathione peroxidase, and serum lysozyme, as well as immunoglobulin M content, significantly increased with increase in dietary leucine levels up to 26.00 g kg-1, but those values decreased significantly with a further increase in dietary leucine. On the contrary, the lowest malondialdehyde content was found in 26.00 and 33.00 g kg-1 leucine groups. The expression levels of IGF 1 and MYF 5 genes in muscle were significantly upregulated with increase in dietary leucine levels up to 26.00 g kg-1, but the expression of MSTN level showed the opposite trend. The lowest expression levels of IL 8 and TNFɑ genes in the liver were found in 26.00 g kg-1 leucine groups. The quadratic regression analysis on weight gain, specific growth rate, and feed conversion ratio against dietary leucine levels indicated that the optimal dietary leucine requirement was estimated to be 26.84-27.00 g kg-1of the dry diet.

17.
J Sci Food Agric ; 103(13): 6706-6718, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37276023

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.) has been used widely in preparing silage. However, forage legumes are prone to contamination by spoilage bacteria during fermentation. Nisin has broad-spectrum antibacterial properties and has been applied as an inhibitor of rumen methane emissions. However, little research has been carried out on the application of nisin in silage. This study therefore aimed to investigate the impacts of different nisin concentrations on the bacterial community and fermentation dynamics, in vitro ruminal fermentation characteristics, microbiota, and methane emissions of alfalfa silage. RESULTS: The detection limits of organic acid in nisin-treated silages were not reached in 0.09 g kg-1 nisin (0.09 level) from days 1 to 7 of ensiling. With increasing nisin concentrations, the silage dry matter increased linearly (P < 0.05), and dry matter loss decreased linearly (P < 0.05). Moreover, both the 0.06 g kg-1 nisin (0.06 level) and 0.09 level treatments increased the relative abundance of Pediococcus acidilactici during ensiling. Concurrently, as the nisin concentrations increased, ruminal methane production decreased linearly (P < 0.05), while the relative abundances of ruminal Succinivibrio, Fibrobacter succinogenes and Ruminobacter amylophilus increased linearly (P < 0.05). The populations of ruminal total bacteria, methanogens, protozoa, and fungi decreased linearly with increasing nisin concentrations (P < 0.05). CONCLUSION: The addition of nisin delayed the fermentation process, preserved more nutrients in alfalfa silage, and promoted fermentation dominated by P. acidilactici in the late phase of ensiling. Moreover, nisin reduced in vitro rumen methane emissions without adverse effects on dry matter digestibility. © 2023 Society of Chemical Industry.


Assuntos
Microbiota , Nisina , Animais , Feminino , Silagem/análise , Leite/química , Medicago sativa/microbiologia , Lactação , Dieta , Rúmen/metabolismo , Fermentação , Metano/metabolismo , Nisina/farmacologia , Digestão , Bactérias
18.
Appl Microbiol Biotechnol ; 107(11): 3443-3457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099058

RESUMO

Alfalfa silage fermentation quality, metabolome, bacterial interactions, and successions as well as their predicted metabolic pathways were explored under different dry matter contents (DM) and lactic acid bacteria (LAB) inoculations. Silages were prepared from alfalfa with DM contents of 304 (LDM) and 433 (HDM) g/kg fresh weight and inoculated with Lactiplantibacillus plantarum (L. plantarum, LP), Pediococcus pentosaceus (P. pentosaceus, PP), or sterile water (control). The silages were stored at a simulated hot climate condition (35°C) and sampled at 0, 7, 14, 30, and 60 days of fermentation. The results revealed that HDM significantly improved the alfalfa silage quality and altered microbial community composition. The GC-TOF-MS analysis discovered 200 metabolites in both LDM and HDM alfalfa silage, mainly consisting of amino acids, carbohydrates, fatty acids, and alcohols. Compared with LP and control, PP-inoculated silages had increased concentrations of lactic acid (P < 0.05) and essential amino acids (threonine and tryptophan) as well as decreased pH, putrescine content, and amino acid metabolism. However, alfalfa silage inoculated with LP had higher proteolytic activities than control and PP-inoculated silage, as revealed by a higher concentration of ammonia nitrogen (NH3-N), and also upregulated amino acid and energy metabolism. HDM content and P. pentosaceus inoculation significantly altered the composition of alfalfa silage microbiota from 7 to 60 days of ensiling. Conclusively, these results indicated that inoculation with PP exhibited great potential in enhancing the fermentation of silage with LDM and HDM via altering the microbiome and metabolome of the ensiled alfalfa, which could help in understanding and improving the ensiling practices under hot climate conditions. KEY POINTS: • HDM improved fermentation quality and declined putrescine content of alfalfa silage • P. pentosaceus inoculation enhanced the fermentation quality of alfalfa silage • P. pentosaceus is an ideal inoculant for alfalfa silage under high temperature.


Assuntos
Medicago sativa , Putrescina , Medicago sativa/microbiologia , Temperatura , Bactérias , Silagem/microbiologia , Fermentação , Metaboloma , Aminoácidos
20.
J Anim Sci Biotechnol ; 14(1): 43, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36915166

RESUMO

BACKGROUND: Ferulic acid esterase (FAE)-secreting Lactiplantibacillus plantarum A1 (Lp A1) is a promising silage inoculant due to the FAE's ability to alter the plant cell wall structure during ensiling, an action that is expected to improve forage digestibility. However, little is known regarding the impacts of Lp A1 on rumen microbiota. Our research assessed the influences of Lp A1 in comparison to a widely adopted commercial inoculant Lp MTD/1 on alfalfa's ensilage, in vitro rumen incubation and microbiota. RESULTS: Samples of fresh and ensiled alfalfa treated with (either Lp A1 or Lp MTD/1) or without additives (as control; CON) and ensiled for 30, 60 and 90 d were used for fermentation quality, in vitro digestibility and batch culture study. Inoculants treated silage had lower (P < 0.001) pH, acetic acid concentration and dry matter (DM) loss, but higher (P = 0.001) lactic acid concentration than the CON during ensiling. Compared to the CON and Lp MTD/1, silage treated with Lp A1 had lower (P < 0.001) aNDF, ADF, ADL, hemicellulose, and cellulose contents and higher (P < 0.001) free ferulic acid concentration. Compared silage treated with Lp MTD/1, silage treated with Lp A1 had significantly (P < 0.01) improved ruminal gas production and digestibility, which were equivalent to those of fresh alfalfa. Real-time PCR analysis indicated that Lp A1 inoculation improved the relative abundances of rumen's total bacteria, fungi, Ruminococcus albus and Ruminococcus flavefaciens, while the relative abundance of methanogens was reduced by Lp MTD/1 compared with CON. Principal component analysis of rumen bacterial 16S rRNA gene amplicons showed a clear distinction between CON and inoculated treatments without noticeable distinction between Lp A1 and Lp MTD/1 treatments. Comparison analysis revealed differences in the relative abundance of some bacteria in different taxa between Lp A1 and Lp MTD/1 treatments. Silage treated with Lp A1 exhibited improved rumen fermentation characteristics due to the inoculant effects on the rumen microbial populations and bacterial community. CONCLUSIONS: Our findings suggest that silage inoculation of the FAE-producing Lp A1 could be effective in improving silage quality and digestibility, and modulating the rumen fermentation to improve feed utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA