Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(24): e2306952, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175860

RESUMO

Soft actuators inspired by the movement of organisms have attracted extensive attention in the fields of soft robotics, electronic skin, artificial intelligence, and healthcare due to their excellent adaptability and operational safety. Liquid crystal elastomer fiber actuators (LCEFAs) are considered as one of the most promising soft actuators since they can provide reversible linear motion and are easily integrated or woven into complex structures to perform pre-programmed movements such as stretching, rotating, bending, and expanding. The research on LCEFAs mainly focuses on controllable preparation, structural design, and functional applications. This review, for the first time, provides a comprehensive and systematic review of recent advances in this important field by focusing on reversible thermal response LCEFAs. First, the thermal driving mechanism, and direct and indirect heating strategies of LCEFAs are systematically summarized and analyzed. Then, the fabrication methods and functional applications of LCEFAs are summarized and discussed. Finally, the challenges and technical difficulties that may hinder the performance improvement and large-scale production of LCEFAs are proposed, and the development opportunities of LCEFAs are prospected.

2.
Int J Biol Macromol ; 234: 123722, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801280

RESUMO

The ability of autologous platelet-rich plasma (PRP) gel to promote rapid wound healing without immunological rejection has opened new avenues for the treatment of diabetic foot wounds. However, PRP gel still suffers from the quick release of growth factors (GFs) and requires frequent administration, thus resulting in decreased wound healing efficiency, higher cost as well as greater pain and suffering for the patients. In this study, the flow-assisted dynamic physical cross-linked coaxial microfluidic three-dimensional (3D) bio-printing technology, combined with the calcium ion chemical dual cross-linking method was developed to design PRP-loaded bioactive multi-layer shell-core fibrous hydrogels. The prepared hydrogels exhibited outstanding water absorption-retention capacity, good biocompatibility as well as a broad-spectrum antibacterial effect. Compared with clinical PRP gel, these bioactive fibrous hydrogels displayed a sustained release of GFs, reducing the administration frequency by 33 % availably during the wound treatment, but more prominent therapeutic effects such as effective reduced inflammation, in addition to promoting the growth of granulation tissue and angiogenesis, the formation of high-density hair follicles, and the generation of regular ordered and high-density collagen fiber network, which suggested great promise as exceptional candidates for treatment of diabetic foot ulcer in clinical settings.


Assuntos
Quitosana , Diabetes Mellitus , Pé Diabético , Plasma Rico em Plaquetas , Humanos , Gelatina/farmacologia , Hidrogéis/farmacologia , Pé Diabético/tratamento farmacológico , Quitosana/farmacologia , Alginatos/farmacologia , Preparações de Ação Retardada/farmacologia , Cicatrização , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Plasma Rico em Plaquetas/metabolismo , Diabetes Mellitus/metabolismo
3.
Colloids Surf B Biointerfaces ; 222: 113081, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566687

RESUMO

Taking inspiration from the structures of roots, stems and leaves of trees in nature, a biomimetic three-layered scaffold was designed for efficient water management and cell recruitment. Using polycaprolactone (PCL) and polyacrylonitrile (PAN) as raw materials, radially oriented nanofiber films and multistage adjustable nanofiber films were prepared through electrospinning technology as the base skin-friendly layer (roots) and middle unidirectional moisture conductive material (stems), the porous polyurethane foam was integrated as the outer moisturizing layer (leaves). Among which, radially oriented nanofiber films could promote the directional migration of fibroblasts and induce cell morphological changes. For the spatially hierarchically nanofiber films, the unidirectional transport of liquid was effectively realized. While the porous polyurethane foam membrane could absorb 9 times its weight in biofluid and retain moisture for up to 10 h. As a result, the biomimetic three-layered scaffolds with different structures can promote wound epithelization and drain biofluid while avoiding wound inflammation caused by excessive biofluid, which is expected to be applied in the field of skin wounds.


Assuntos
Nanofibras , Alicerces Teciduais , Alicerces Teciduais/química , Biomimética , Água , Poliésteres/química , Abastecimento de Água , Nanofibras/química , Engenharia Tecidual
4.
Biomater Sci ; 10(10): 2568-2576, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35389411

RESUMO

The healing mechanism of diabetic foot wounds is very complicated, and it is difficult for a single-function medical dressing to achieve good therapeutic effects. We propose a simple coaxial biological 3D printing technology, which uses one-step 3D deposition to continuously produce multifunctional medical dressings on the basis of core-shell hydrogel fibers. These dressings have good biocompatibility, controlled drug-release performance, excellent water absorption and retention, and antibacterial and anti-inflammatory functions. In vivo experiments with type 2 diabetic rats were performed over a 14-day period to compare the performance of the multifunctional 3D dressing with a gauze control; the multifunctional 3D dressing reduced inflammation, effectively increased the post-healing thickness of granulation tissue, and promoted the formation of blood vessels, hair follicles, and highly oriented collagen fiber networks. Therefore, the proposed multifunctional dressing is expected to be suitable for clinical applications for healing diabetic foot wounds.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Animais , Bandagens , Diabetes Mellitus Experimental/complicações , Pé Diabético/tratamento farmacológico , Hidrogéis/farmacologia , Ratos , Cicatrização
5.
Lab Chip ; 21(13): 2594-2604, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34008681

RESUMO

Helical structures are attracting increasing attention owing to their unique typical physical and chemical properties. However, it remains a challenge to construct atypical helical structures at the microscale. This paper proposes a continuous spinning method with a microfluidic-chip-based spinning device to engineer atypical helical microfibers. The strategy causes polymer fluid to form the biomimetic Bulbine torta (BT)-like shape with the aid of the inhomogeneous viscosity rope-coil effect. In particular, the structure parameter of the BT microfibers could be optimized through the synchronous regulation of the microfluidic flow and reaction kinetics, and the obtained microfibers exhibit ultrahigh strain sensitivity, indicating great promise as exceptional candidates for constructing ideal strain sensors. In addition, single- and double-hollow BT microfibers are also prepared by introducing the core flow channel into the microfluidic chip and demonstrate high structural similarity to irregular blood vessels (e.g. varicose veins), which is promising for the actual application of blood vessel tissue engineering.


Assuntos
Biomimética , Microfluídica , Dispositivos Lab-On-A-Chip , Polímeros , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA