Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 831903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433660

RESUMO

Thoracic endovascular aortic repair (TEVAR) is a common treatment for Stanford type B aortic dissection (TBAD). However, re-entry tears might be found distal to the stented region which transports blood between the true and false lumens. Sealing the re-entry tears, especially for the thoracic tears, could further reduce blood perfusion to the false lumen; however, it might also bring risks by re-intervention or surgery. Wise determination of the necessity to seal the re-entry tears is needed. In this study, patient-specific models of TBAD were reconstructed, and the modified models were established by virtually excluding the thoracic re-entries. Computational hemodynamics was investigated, and the variation of the functional index and first balance position (FBP) of the luminal pressure difference, due to the sealing of the re-entries, was reported. The results showed that the direction of the net flow through the unstented thoracic re-entries varied among cases. Excluding the re-entries with the net flow toward the false lumen may induce the FBP moving distally and the relative particle residence time increasing in the false lumen. This study preliminarily demonstrated that the hemodynamic status of the re-entry tears might serve as an indicator to the necessity of sealing. By quantifying the through-tear flow exchange and shift of FBP, one can predict the hemodynamic benefit by sealing the thoracic re-entries and thus wisely determine the necessity of further interventional management.

2.
Eur Biophys J ; 51(2): 119-133, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35171346

RESUMO

Mechanobiology is an emerging field at the interface of biology and mechanics, investigating the roles of mechanical forces within biomolecules, organelles, cells, and tissues. As a highlight, the recent advances of micropipette-based aspiration assays and dynamic force spectroscopies such as biomembrane force probe (BFP) provide unprecedented mechanobiological insights with excellent live-cell compatibility. In their classic applications, these assays measure force-dependent ligand-receptor-binding kinetics, protein conformational changes, and cellular mechanical properties such as cortical tension and stiffness. In recent years, when combined with advanced microscopies in high spatial and temporal resolutions, these biomechanical nanotools enable characterization of receptor-mediated cell mechanosensing and subsequent organelle behaviors at single-cellular and molecular level. In this review, we summarize the latest developments of these assays for live-cell mechanobiology studies. We also provide perspectives on their future upgrades with multimodal integration and high-throughput capability.


Assuntos
Fenômenos Mecânicos , Proteínas , Fenômenos Biomecânicos , Biofísica , Cinética , Ligantes , Proteínas/química
3.
Front Microbiol ; 13: 1100232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726561

RESUMO

Although microorganisms and silicon are well documented as factors that mitigate salt stress, their effect mitigating saline-alkaline stress in plants remains unknown. In this study, wheat plant seeds were treated with silicon, Enterobacter sp. FN0603 alone and in combination of both. Wheat seeds were soaked in silicon and bacterial solutions and sown in pots containing artificial saline-alkaline soils to compare the effects among all treatments. The results showed that the treatments with silicon and FN0603 alone significantly changed plant morphology, enhanced the rhizosphere soil nutrient content and enzyme activities, improved some important antioxidant enzyme activities (e.g., superoxide dismutase) and the contents of small molecules (e.g., proline) that affected osmotic conditions in the top second leaves. However, treatment with silicon and FN0603 in combination significantly further increased these stress tolerance indexes and eventually promoted the plant growth dramatically compared to the treatments with silicon or FN0603 alone (p < 0.01), indicating a synergic plant growth-promoting effect. High relative abundance of strain FN0603 was detected in the treated plants roots, and silicon further improved the colonization of FN0603 in stressed wheat roots. Strain FN0603 particularly when present in combination with silicon changed the root endophytic bacterial and fungal communities rather than the rhizosphere communities. Bipartite network analysis, variation partitioning analysis and structure equation model further showed that strain FN0603 indirectly shaped root endophytic bacterial and fungal communities and improved plant physiology, rhizosphere soil properties and plant growth through significantly and positively directing FN0603-specific biomarkers (p < 0.05). This synergetic effect of silicon and plant growth-promoting microorganism in the mitigation of saline-alkaline stress in plants via shaping root endophyte community may provide a promising approach for sustainable agriculture in saline-alkaline soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA