Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Environ Res ; : 119530, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004391

RESUMO

With stringent regulations of internal combustion engine on reducing CO2 emission, ammonia has been used as an alternative fuel. Investigating how engine-related performance is affected by partial ammonia replacement of diesel fuel is essential for understanding the combustion. Therefore, in this study, a three-dimensional numerical simulation model is developed for the burning of two fuels of diesel and ammonia based on relevant parameters (i.e., compression ratio, load, ammonia energy fraction, etc.) in a lab-made diesel engine. The consequences of load and compression proportion on combustion and pollutant emissions are investigated for ammonia energy fractions between 50% and 90%. When the ammonia portion rises, the increased ammonia equivalent ratio causes ammonia to move away from the dilute combustion boundary and accelerates the combustion rate of ammonia. An increase in compression ratio significantly increases the specified thermal performance and combustion efficacy. When the compression ratio is 16, as the ammonia energy fractions increases, due to the increase in the proportion of ammonia, that is, the proportion of nitrogen atoms increases, more NOx is generated during the combustion process. When the ammonia substitution rate is 90%, as the compression ratio increases, the cylinder pressure and temperature increase. The combustion efficiency of ammonia increases, generating more NOx and NOx emissions can reach 0.66 mg/m3. At a compression ratio of 18, the NOx emissions can reach 1.59 mg/m3. However, under medium and low load conditions, as the ammonia fraction increases, the total energy of fuel decreases, and the combustion efficiency of ammonia decreases, resulting in a decrease in the heat released during combustion and a decrease in NOx emissions. When the ammonia substitution rate is 90% and the load is 25%, NOx emissions reach 0.1 mg/m3. This research provides theoretical suggestions for the profitable and use ammonia fuel in internal combustion engines in a clean manner.

2.
Small ; : e2404055, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970546

RESUMO

Laccase is capable of catalyzing a vast array of reactions, but its low redox potential limits its potential applications. The use of photocatalytic materials offers a solution to this problem by converting absorbed visible light into electrons to facilitate enzyme catalysis. Herein, MIL-53(Fe) and NH2-MIL-53(Fe) serve as both light absorbers and enzyme immobilization carriers, and laccase is employed for solar-driven chemical conversion. Electron spin resonance spectroscopy results confirm that visible light irradiation causes rapid transfer of photogenerated electrons from MOF excitation to T1 Cu(II) of laccase, significantly increasing the degradation rate constant of tetracycline (TC) from 0.0062 to 0.0127 min-1. Conversely, there is only minimal or no electron transfer between MOF and laccase in the physical mixture state. Theoretical calculations demonstrate that the immobilization of laccase's active site and its covalent binding to the metal-organic framework surface augment the coupled system's activity, reducing the active site accessible from 27.8 to 18.1 Å. The constructed photo-enzyme coupled system successfully combines enzyme catalysis' selectivity with photocatalysis's high reactivity, providing a promising solution for solar energy use.

3.
Small ; : e2404011, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864206

RESUMO

While MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance. As a result, the MCN50 composite electrode achieves a high specific capacitance of 418.4 F g-1 at 1 A g-1. The assembled symmetric supercapacitor delivers a corresponding power density of 1658.9 W kg-1 and an energy density of 30.8 Wh kg-1. The all-solid-state zinc ion supercapacitor demonstrates a superior energy density of 68.4 Wh kg-1 and a power density of 403.5 W kg-1 and shows a high capacitance retention of 93% after 8000 charge-discharge cycles. This study sheds a new light on the design and development of novel MXene-based composite electrodes for high performance all-solid-state zinc ion supercapacitor.

4.
Nanomicro Lett ; 16(1): 195, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743205

RESUMO

A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m-1 K-1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.

5.
J Colloid Interface Sci ; 664: 790-800, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492380

RESUMO

Deleterious volumetric expansion and poor electrical conductivity seriously hinder the application of Si-based anode materials in lithium-ion batteries (LIBs). Herein, boron-doped three-dimensional (3D) porous carbon framework/carbon shell encapsulated silicon (B-3DCF/Si@C) hybrid composites are successfully prepared by two coating and thermal treatment processes. The presence of 3D porous carbon skeleton and carbon shell effectively improves the mechanical properties of the B-3DCF/Si@C electrode during the cycling process, ensures the stability of the electrical contacts of the silicon particles and stabilizes the solid electrolyte interface (SEI) layer, thus enhancing the electronic conductivity and ion migration efficiency of the anode. The developed B-3DCF/Si@C anode has a high reversible capacity, excellent cycling stability and outstanding rate performance. A reversible capacity of 1288.5 mAh/g is maintained after 600 cycles at a current density of 400 mA g-1. The improved electrochemical performance is demonstrated in a full cell using a LiFePO4-based cathode. This study presents a novel approach that not only mitigates the large volume expansion effects in LIB anode materials, but also provides a reference model for the preparation of porous composites with various functionalities.

6.
Adv Healthc Mater ; 13(13): e2304676, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38294131

RESUMO

Adhesive hydrogel holds huge potential in biomedical applications, such as hemostasis and emergent wound management during outpatient treatment or surgery. However, most adhesive hydrogels underperform to offer robust adhesions on the wet tissue, increasing the risk of hemorrhage and reducing the fault tolerance of surgery. To address this issue, this work develops a polysaccharide-based bioadhesive hydrogel tape (ACAN) consisting of dual cross-linking of allyl cellulose (AC) and carboxymethyl chitosan (CMCS). The hygroscopicity of AC and CMCS networks enables ACAN to remove interfacial water from the tissue surface and initializes a physical cross-link instantly. Subsequently, covalent cross-links are developed with amine moieties to sustain long-term and robust adhesion. The dual cross-linked ACAN also has good cytocompatibility with controllable mechanical properties matching to the tissue, where the addition of CMCS provides remarkable antibacterial properties and hemostatic capability. Moreover, compared with commercially available 3 M film, ACAN provides an ultrafast wound healing on tissue. The ACAN hybrid hydrogels have advantages such as biocompatibility and antibacterial, hemostatic, and wound healing properties, shedding new light on first-aid tape design and advancing the cellulose-based materials technology for high-performance biomedical applications.


Assuntos
Celulose , Quitosana , Hidrogéis , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Celulose/química , Celulose/análogos & derivados , Celulose/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Reagentes de Ligações Cruzadas/química , Hemostáticos/química , Hemostáticos/farmacologia , Humanos
7.
Int J Biol Macromol ; 263(Pt 2): 129803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296147

RESUMO

Acid polysaccharide was extracted from Salvia przewalskii root powders (PSP), purified by diethylaminoethyl cellulose column (DEAE-52) and molecular sieve (PSP2). PSPm1 was obtained by modifying PSP2 with nitrite and phosphoric acid. The chemical structure of PSP2 and PSPm1 exhibited notable distinctions, primarily due to the absence of arabinose and promotion of glucuronic acid (GlcA). The structure of PSPm1 was deduced through the utilization of 1H, 13C, and 2-D NMR. The main chain was linked by α-D-Galp(1 â†’ 3)-α-Glcp-(1 â†’ fragments and →6)-ß-D-Galp fragments, with the presence of →4)-α-D-GlcpA-(1 â†’ 6)-ß-D-Galp-(1 â†’ ï¼Œ â†’ 4)-α-D-GalAp-(1 â†’ 2,4)-α-D-Rhap-(1 â†’ fragments and →6)-α-Glcp-(1 â†’ 2,4)-ß-D-Manp-(1 â†’ fragments. PSPm1 exhibited different immunoregulatory bioactivity in vitro, including haemostatic effects indicated by activated clotting time of 55.5 % reduction by the activated clotting time (ACT) test and wound healing function in vivo. PSPm1 also displayed better anti-tumor biological effects than unmodified. The structure-activity dissimilarity between PSP2 and PSPm1 primarily stems from variations in molecular weight (Mw), monosaccharide composition, and branching patterns. The modification of polysaccharides from the extract residues of Chinese medicinal materials may be a new form of drug supplements.


Assuntos
Monossacarídeos , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Monossacarídeos/química , Espectroscopia de Ressonância Magnética , Peso Molecular
8.
Int J Biol Macromol ; 257(Pt 1): 128588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048922

RESUMO

This study focuses on the characterization and regulation of glycolipid metabolism of polysaccharides derived from biomass of Phyllostachys nigra (Lodd. ex Lindl.) root (PNr). The extracts from dilute hydrochloric acid, hot water, and 2 % sodium hydroxide solution were characterized through molecular weight, gel permeation chromatography, monosaccharides, Fourier transform infrared, and nuclear magnetic resonance spectroscopy analyses. Polysaccharide from alkali extraction and molecular sieve purification (named as: PNS2A) exhibited optimal inhibitory of 3T3-L1 cellular differentiation and lowered insulin resistance. The PNS2A is made of a hemicellulose-like main chain of →4)-ß-D-Xylp-(1→ that was connected by branches of 4-O-Me-α-GlcAp-(1→, T-α-D-Galp-(1→, T-α-L-Araf-(1→, →2)-α-L-Araf-(1→, as well as ß-D-Glcp-(1→4-ß-D-Glcp-(1→ fragments. Oral delivery of PNS2A in diabetes mice brought down blood glucose and cholesterol levels and regulated glucose and lipid metabolism. PNS2A alleviated diabetes symptoms and body weight and protected liver and kidney function in model animals by altering the gut microbiome. Polysaccharides can be a new approach to develop bamboo resources.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Camundongos , Animais , Polissacarídeos/química , Monossacarídeos/análise , Glucose/análise , Poaceae
9.
Adv Colloid Interface Sci ; 323: 103053, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056226

RESUMO

Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antifúngicos/farmacologia , Antifúngicos/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Química Verde/métodos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
10.
Chem Rec ; 23(12): e202300317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054611

RESUMO

Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2 ) reduction reaction (CO2 RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2 RR. Finally, the challenges and opportunities in this field are discussed.

11.
Nanomicro Lett ; 16(1): 36, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019340

RESUMO

MXene, a transition metal carbide/nitride, has been prominent as an ideal electrochemical active material for supercapacitors. However, the low MXene load limits its practical applications. As environmental concerns and sustainable development become more widely recognized, it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton. The present study proposes an effective 3D fabrication method that uses MXene to fabricate waste denim felt into ultralight and flexible supercapacitors through needling and carbonization. The 3D structure provided more sites for loading MXene onto Z-directional fiber bundles, resulting in more efficient ion exchange between the electrolyte and electrodes. Furthermore, the carbonization process removed the specific adverse groups in MXenes, further improving the specific capacitance, energy density, power density and electrical conductivity of supercapacitors. The electrodes achieve a maximum specific capacitance of 1748.5 mF cm-2 and demonstrate remarkable cycling stability maintaining more than 94% after 15,000 galvanostatic charge/discharge cycles. Besides, the obtained supercapacitors present a maximum specific capacitance of 577.5 mF cm-2, energy density of 80.2 µWh cm-2 and power density of 3 mW cm-2, respectively. The resulting supercapacitors can be used to develop smart wearable power devices such as smartwatches, laying the foundation for a novel strategy of utilizing waste cotton in a high-quality manner.

12.
Nanomicro Lett ; 15(1): 220, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812363

RESUMO

Cobalt nickel bimetallic oxides (NiCo2O4) have received numerous attentions in terms of their controllable morphology, high temperature, corrosion resistance and strong electromagnetic wave (EMW) absorption capability. However, broadening the absorption bandwidth is still a huge challenge for NiCo2O4-based absorbers. Herein, the unique NiCo2O4@C core-shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy. The concentration of oxygen vacancies and morphologies of the three-dimensional (3D) cubic hollow core-shell NiCo2O4@C framework were effectively optimized by adjusting the calcination temperature. The specially designed 3D framework structure facilitated the multiple reflections of incident electromagnetic waves and provided rich interfaces between multiple components, generating significant interfacial polarization losses. Dipole polarizations induced by oxygen vacancies could further enhance the attenuation ability for the incident EM waves. The optimized NiCo2O4@C hollow microcubes exhibit superior EMW absorption capability with minimum RL (RLmin) of -84.45 dB at 8.4 GHz for the thickness of 3.0 mm. Moreover, ultrabroad effective absorption bandwidth (EAB) as large as 12.48 GHz (5.52-18 GHz) is obtained. This work is believed to illuminate the path to synthesis of high-performance cobalt nickel bimetallic oxides for EMW absorbers with excellent EMW absorption capability, especially in broadening effective absorption bandwidth.

13.
Small ; 19(52): e2302335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661587

RESUMO

Strong, conductive, and flexible materials with improving ion accessibility have attracted significant attention in electromagnetic interference (EMI) and foldable wearable electronics. However, it still remains a great challenge to realize high performance at the same time for both properties. Herein, a microscale structural design combined with nanostructures strategy to fabricate TOCNF(F)/Ti3 C2 Tx (M)@AgNW(A) composite films via a facile vacuum filtration process followed by hot pressing (TOCNF = TEMPO-oxidized cellulose nanofibrils, NW = nanowires) is described. The comparison reveals that different microscale structures can significantly influence the properties of thin films, especially their electrochemical properties. Impressively, the ultrathin MA/F/MA film with enhanced layer in the middle exhibits an excellent tensile strength of 107.9 MPa, an outstanding electrical conductivity of 8.4 × 106 S m-1 , and a high SSE/t of 26 014.52 dB cm2 g-1 . The assembled asymmetric MA/F/MA//TOCNF@CNT (carbon nanotubes) supercapacitor leads to a significantly high areal energy density of 49.08 µWh cm-2 at a power density of 777.26 µW cm-2 . This study proposes an effective strategy to circumvent the trade-off between EMI performance and electrochemical properties, providing an inspiration for the fabrication of multifunctional films for a wide variety of applications in aerospace, national defense, precision instruments, and next-generation electronics.

14.
J Colloid Interface Sci ; 651: 494-503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37556906

RESUMO

In the field of electromagnetic (EM) wave absorption, intrinsic conductive polymers with conjugated long-chain structures, such as polyaniline (PANI) and polypyrrole (PPy), have gained widespread use due to their remarkable electrical conductivity and loss ability. However, current research in this area is limited to macroscopic descriptions of the absorption properties of these materials and the contribution of various components to the absorption effect. There has been insufficient exploration of the impact mechanisms of polymer aggregation states on the material's absorption performance and mechanism. To address this, a series of flexible PANI sponge absorbers with different molecular weights and aggregation states were prepared. By carefully controlling the crystallinity and other aggregation characteristics of PANI through the adjustment of its preparation conditions, we were able to influence its electrical conductivity and electromagnetic parameters, thereby achieving control over the material's absorption properties. The resulting PANI sponge absorbers exhibited an effective absorption bandwidth (EAB) that covered the entire X-band at a thickness of 3.2 mm. This study comprehensively explores the absorption mechanisms of conductive polymer absorbers, starting from the microstructure of PANI, and providing a more complete theoretical support for the research and promotion of polymer absorbers.

15.
Small ; 19(46): e2303716, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475506

RESUMO

Harvesting electrical energy from water and moisture has emerged as a novel ecofriendly energy conversion technology. Herein, a multifunctional asymmetric polyaniline/carbon nanotubes/poly(vinyl alcohol) (APCP) that can produce electric energy from both saline water and moisture and generate fresh water simultaneously is developed. The constructed APCP possesses a negatively charged porous structure that allows continuous generation of protons and ion diffusion through the material, and a hydrophilicity-hydrophobic interface which results in a constant potential difference and sustainable output. A single APCP can maintain stable output for over 130 h and preserve a high voltage of 0.61 V, current of 81 µA, and power density of 82.4 µW cm-3 with 0.15 cm3 unit size in the water-induced electricity generation process. When harvesting moisture energy, the APCP creates dry-wet asymmetries and triggers the spontaneous development of electrical double layer with a current density of 1.25 mA cm-3 , sufficient to power small electronics. A device consisting of four APCP can generate stable electricity of 3.35 V and produce clean water with an evaporation rate of 2.06 kg m-2  h-1 simultaneously. This work provides insights into the fabrication of multifunctional fabrics for multisource energy harvesting and simultaneous solar steam generation.

16.
Small ; 19(45): e2303038, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475524

RESUMO

Biomimetic flexible electronics for E-skin have received increasing attention, due to their ability to sense various movements. However, the development of smart skin-mimic material remains a challenge. Here, a simple and effective approach is reported to fabricate super-tough, stretchable, and self-healing conductive hydrogel consisting of polyvinyl alcohol (PVA), Ti3 C2 Tx MXene nanosheets, and polypyrrole (PPy) (PMP hydrogel). The MXene nanosheets and Fe3+ serve as multifunctional cross-linkers and effective stress transfer centers, to facilitate a considerable high conductivity, super toughness, and ultra-high stretchability (elongation up to 4300%) for the PMP hydrogel with. The hydrogels also exhibit rapid self-healing and repeatable self-adhesive capacity because of the presence of dynamic borate ester bond. The flexible capacitive strain sensor made by PMP hydrogel shows a relatively broad range of strain sensing (up to 400%), with a self-healing feature. The sensor can precisely monitor various human physiological signals, including joint movements, facial expressions, and pulse waves. The PMP hydrogel-based supercapacitor is demonstrated with a high capacitance retention of ≈92.83% and a coulombic efficiency of ≈100%.

17.
Int J Biol Macromol ; 249: 126018, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37517757

RESUMO

In this study, a mild and eco-friendly synergistic treatment strategy was investigated to improve the interfacial compatibility of bamboo fibers with poly(lactic acid). The characterization results in terms of the chemical structure, surface morphology, thermal properties, and water resistance properties demonstrated a homogeneous dispersion and excellent interfacial compatibility of the treated composites. The excellent interfacial compatibility is due to multi-layered coating of bamboo fibers using synergistic treatment involving dilute alkali pretreatment, polydopamine coating and silane coupling agent modification. The composites obtained using the proposed synergistic treatment strategy exhibited excellent mechanical properties. Optimal mechanical properties were observed for composites with synergistically treated bamboo fiber mass proportion of 20 %. The tensile strength, elongation at break and tensile modulus of the treated composites were increased by 63.06 %, 183.04 % and 259.04 %, respectively, compared to the untreated composites. This synergistic treatment strategy and the remarkable performance of the treated composites have a wide range of applicability in bio-composites (such as industrial packaging, automotive lightweight interiors, and consumer goods).


Assuntos
Poliésteres , Poliésteres/química , Resistência à Tração
18.
Mater Horiz ; 10(8): 2800-2823, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204005

RESUMO

Hydrogels have been attracting increasing attention for application in wearable electronics, due to their intrinsic biomimetic features, highly tunable chemical-physical properties (mechanical, electrical, etc.), and excellent biocompatibility. Among many proposed varieties of hydrogels, conductive polymer-based hydrogels (CPHs) have emerged as a promising candidate for future wearable sensor designs, with capability of realizing desired features using different tuning strategies ranging from molecular design (with a low length scale of 10-10 m) to a micro-structural configuration (up to a length scale of 10-2 m). However, considerable challenges remain to be overcome, such as the limited strain sensing range due to the mechanical strength, the signal loss/instability caused by swelling/deswelling, the significant hysteresis of sensing signals, the de-hydration induced malfunctions, and the surface/interfacial failure during manufacturing/processing. This review aims to offer a targeted scan of recent advancements in CPH based wearable sensor technology, from the establishment of dedicated structure-property relationships in the lab to the advanced manufacturing routes for potential scale-up production. The application of CPHs in wearable sensors is also explored, with suggested new research avenues and prospects for CPHs in the future also included.

19.
Mil Med Res ; 10(1): 19, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37101293

RESUMO

A bio-inspired strategy has recently been developed for camouflaging nanocarriers with biomembranes, such as natural cell membranes or subcellular structure-derived membranes. This strategy endows cloaked nanomaterials with improved interfacial properties, superior cell targeting, immune evasion potential, and prolonged duration of systemic circulation. Here, we summarize recent advances in the production and application of exosomal membrane-coated nanomaterials. The structure, properties, and manner in which exosomes communicate with cells are first reviewed. This is followed by a discussion of the types of exosomes and their fabrication methods. We then discuss the applications of biomimetic exosomes and membrane-cloaked nanocarriers in tissue engineering, regenerative medicine, imaging, and the treatment of neurodegenerative diseases. Finally, we appraise the current challenges associated with the clinical translation of biomimetic exosomal membrane-surface-engineered nanovehicles and evaluate the future of this technology.


Assuntos
Exossomos , Doenças Neurodegenerativas , Humanos , Engenharia Tecidual , Medicina Regenerativa , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/metabolismo , Membrana Celular/química , Exossomos/metabolismo
20.
Chemosphere ; 330: 138637, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030340

RESUMO

A two-dimensional nanoflake (Fe/Cu-TPA) was prepared through a simple ultrasonic-centrifuge method. Fe/Cu-TPA has prominent performance on the removal of Pb2+ with low consistences. More than 99% lead (II) (Pb2+) was removed. The adsorption equipoise was established within 60 min for 50 mg L-1 Pb2+. Fe/Cu-TPA shows excellent regenerability with 19.04% decline of Pb2+ adsorption competence in 5 cycles. There are two models for Fe/Cu-TPA adsorption of Pb2+, pseudo-second-order dynamic model and Langmuir isotherm model, with a utmost adsorption competence of 213.56 mg g-1. This work offers a new candidate material for the industrial-grade Pb2+ adsorbents with promising application prospect.


Assuntos
Cobre , Poluentes Químicos da Água , Esgotos , Chumbo , Adsorção , Cátions , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA