Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 44, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934085

RESUMO

To provide a basis for further optimization of the polio sequential immunization schedule, this study evaluated the effectiveness of booster immunization with one dose of bivalent oral poliovirus vaccine (bOPV) at 48 months of age after different primary polio immunization schedules. At 48 months of age, one dose of bOPV was administered, and their poliovirus types 1-3 (PV1, PV2, and PV3, respectively)-specific neutralizing antibody levels were determined. Participants found to be negative for any type of PV-specific neutralizing antibody at 24, 36, or 48 months of age were re-vaccinated with inactivated polio vaccine (IPV). The 439 subjects who received a bOPV booster immunization at the age of 48 months had lower PV2-specific antibody levels compared with those who received IPV. One dose of IPV during basic polio immunization induced the lowest PV2-specific antibody levels. On the basis of our findings, to ensure that no less than 70% of the vaccinated have protection efficiency, we recommend the following: if basic immunization was conducted with 1IPV + 2bOPV (especially Sabin strain-based IPV), a booster immunization with IPV is recommended at 36 months of age, whereas if basic immunization was conducted with 2IPV + 1bOPV, a booster immunization with IPV is recommended at 48 months of age. A sequential immunization schedule of 2IPV + 1bOPV + 1IPV can not only maintain high levels of antibody against PV1 and PV3 but also increases immunity to PV2 and induces early intestinal mucosal immunity, with relatively good safety. Thus, this may be the best sequential immunization schedule for polio in countries or regions at high risk for polio.

2.
Sci Total Environ ; 383(1-3): 106-14, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17572477

RESUMO

To enhance animal productivity and maximize economic returns, mineral salts are routinely added to animal feed worldwide. Salinity and ionic composition of animal manure from intensive poultry and livestock farms in Guangdong province were investigated. Field experiments were conducted for six successive crops of Brassica Parachinensis to evaluate the possibility of secondary soil salinization by successive application of chicken manure (CM) and pigeon manure (PM) to a garden soil. The concentration of total soluble salts (TSS), which were mainly composed of sulfate and chloride of potassium and sodium, averaged 49.0, 20.6 and 60.3 g.kg(- 1) in chicken, pig and pigeon manure, respectively. After three crops, successive application of CM and PM increased soil concentrations of TSS, Na(+), K(+), Mg(2+), SO(4)(2-), and Cl(-) with application rate, resulting in a rise in soil salinity from low to medium levels and a slight reduction in soil pH. After heavy rains during the last three crops, soil TSS was reduced considerably and pH showed a slight increase. Concentrations of Cl(-) and Mg(2+) increased and Ca(2+) decreased at the end of the experiment, all leading to changes in the ionic composition of soil salinity. Manure with higher ion concentrations appeared to play a more important role in affecting ionic composition of soil salinity. The results further suggest that even in a region with abundant rainfall like Guangzhou, there is still potential risk for secondary soil salinization when high rates of CM and PM are applied.


Assuntos
Cloretos/análise , Fertilizantes , Esterco/análise , Metais/análise , Poluentes do Solo/análise , Sulfatos/análise , Agricultura , Animais , Brassica , Galinhas , Columbidae , Concentração de Íons de Hidrogênio , Chuva , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA