Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712202

RESUMO

The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1 , a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1 , Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.

2.
Front Genet ; 14: 1079198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501720

RESUMO

Genome-wide association studies (GWAS) have successfully identified a large number of genetic variants associated with traits and diseases. However, it still remains challenging to fully understand the functional mechanisms underlying many associated variants. This is especially the case when we are interested in variants shared across multiple phenotypes. To address this challenge, we propose graph-GPA 2.0 (GGPA 2.0), a statistical framework to integrate GWAS datasets for multiple phenotypes and incorporate functional annotations within a unified framework. Our simulation studies showed that incorporating functional annotation data using GGPA 2.0 not only improves the detection of disease-associated variants, but also provides a more accurate estimation of relationships among diseases. Next, we analyzed five autoimmune diseases and five psychiatric disorders with the functional annotations derived from GenoSkyline and GenoSkyline-Plus, along with the prior disease graph generated by biomedical literature mining. For autoimmune diseases, GGPA 2.0 identified enrichment for blood-related epigenetic marks, especially B cells and regulatory T cells, across multiple diseases. Psychiatric disorders were enriched for brain-related epigenetic marks, especially the prefrontal cortex and the inferior temporal lobe for bipolar disorder and schizophrenia, respectively. In addition, the pleiotropy between bipolar disorder and schizophrenia was also detected. Finally, we found that GGPA 2.0 is robust to the use of irrelevant and/or incorrect functional annotations. These results demonstrate that GGPA 2.0 can be a powerful tool to identify genetic variants associated with each phenotype or those shared across multiple phenotypes, while also promoting an understanding of functional mechanisms underlying the associated variants.

3.
Biomolecules ; 13(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36830591

RESUMO

Gene expression profiling technologies have been used in various applications such as cancer biology. The development of gene expression profiling has expanded the scope of target discovery in transcriptomic studies, and each technology produces data with distinct characteristics. In order to guarantee biologically meaningful findings using transcriptomic experiments, it is important to consider various experimental factors in a systematic way through statistical power analysis. In this paper, we review and discuss the power analysis for three types of gene expression profiling technologies from a practical standpoint, including bulk RNA-seq, single-cell RNA-seq, and high-throughput spatial transcriptomics. Specifically, we describe the existing power analysis tools for each research objective for each of the bulk RNA-seq and scRNA-seq experiments, along with recommendations. On the other hand, since there are no power analysis tools for high-throughput spatial transcriptomics at this point, we instead investigate the factors that can influence power analysis.


Assuntos
Análise de Célula Única , Transcriptoma , Análise de Sequência de RNA , Perfilação da Expressão Gênica , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA