Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Environ Manage ; 368: 122163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39182378

RESUMO

Pesticides pose a significant threat to aquatic ecosystems due to their persistent nature and adverse effects on biota. The increased detection of pesticides in various water bodies has prompted research into their toxicological impacts and potential remediation strategies. However, addressing this issue requires the establishment of robust regulatory frameworks to determine safe thresholds for pesticide concentrations in water and the development of effective treatment methods. This assessment underscores the complex ecological risks associated with organophosphate pesticides (OPPs) and emphasizes the urgent need for strategic management and regulatory measures. This study presents a detailed examination of the global prevalence of OPPs and their potential adverse effects on aquatic and human life. A comprehensive risk assessment identifies azinphos-methyl, chlorpyrifos, and profenfos as posing considerable ecological hazard to fathead minnow, daphnia magna, and T. pyriformis. Additionally, this review explores the potential efficacy of constructed wetlands (CWs) as a sustainable approach for mitigating wastewater contamination by diverse pesticide compounds. Furthermore, the review assess the effectiveness of CWs for treating wastewater contaminated with pesticides by critically analyzing the removal mechanism and key factors. The study suggests that the optimal pH range for CWs is 6-8, with higher temperatures promoting microbial breakdown and lower temperatures enhancing pollutant removal through adsorption and sedimentation. The importance of wetland vegetation in promoting sorption, absorption, and degradation processes is emphasized. The study emphasizes the importance of hydraulic retention time (HRT) in designing, operating, and maintaining CWs for pesticide-contaminated water treatment. The removal efficiency of CWs ranges from 38% to 100%, depending on factors like pesticide type, substrate materials, reactor setup, and operating conditions.


Assuntos
Praguicidas , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Águas Residuárias/química , Águas Residuárias/análise , Praguicidas/análise , Poluentes Químicos da Água/análise , Organofosfatos/análise
2.
J Environ Manage ; 354: 120339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401495

RESUMO

Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Oxirredução , Água , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
3.
Environ Sci Pollut Res Int ; 31(8): 11349-11370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180651

RESUMO

The uncontrolled discharge of industry- and consumer-derived micropollutants and synthetic contaminants into freshwater bodies represents a severe threat to human health and aquatic ecosystem. Inexpensive and highly efficient wastewater treatment methods are, therefore, urgently required to eliminate such non-biodegradable, recalcitrant, and toxic organic pollutants. In this context, advanced oxidation processes, particularly heterogenous photocatalysis, have received enormous attention over the past few decades. Among the different classes of photocatalysts explored by the scientific community, heterojunction photocatalysts, in general, and binary heterojunction photocatalysts, in particular, have shown tremendous promise, attributed to their many distinct advantages. As such, the present review highlights the application of diverse array of binary heterojunction photocatalysts for eliminating water-borne contaminants. Specifically, a bibliometric analysis has been conducted to identify the ongoing research trend and future prospects of heterojunction photocatalysts. It appears that metal oxide/metal oxide-based heterojunctions have superior thermal and mechanical stability compared to other heterojunction photocatalysts. In contrast, metal oxide/non-metal semiconductor-based heterojunctions are extremely effective in pollutant degradation without significant leaching of metal ions. The review concludes by proposing novel strategic research guidelines in order to make further advances in this rapidly evolving cross-disciplinary field of topical interest.


Assuntos
Líquidos Corporais , Poluentes Ambientais , Humanos , Ecossistema , Bibliometria , Óxidos
4.
J Environ Manage ; 351: 119672, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042072

RESUMO

Over the past few decades, the increase in dependency on healthcare facilities has led to the generation of large quantities of hospital wastewater (HWW) rich in chemical oxygen demand (COD), total suspended solids (TSS), ammonia, recalcitrant pharmaceutically active compounds (PhACs), and other disease-causing microorganisms. Conventional treatment methods often cannot effectively remove the PhACs present in wastewater. Hence, hybrid processes comprising of biological treatment and advanced oxidation processes have been used recently to treat complex wastewater. The current study explores the performance of pilot-scale treatment of real HWW (3000 L/d) spiked with carbamazepine (CBZ) using combinations of moving and stationary bed bio-reactor-sedimentation tank (MBSST), aerated horizontal flow constructed wetland (AHFCW), and photocatalysis. The combination of MBSST and AHFCW could remove 85% COD, 93% TSS, 99% ammonia, and 30% CBZ. However, when the effluent of the AHFCW was subjected to photocatalysis, an enhanced CBZ removal of around 85% was observed. Furthermore, the intermediate products (IPs) formed after the photocatalysis was also less toxic than the IPs formed during the biological processes. The results of this study indicated that the developed pilot-scale treatment unit supplemented with photocatalysis could be used effectively to treat HWW.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Amônia , Carbamazepina/análise , Análise da Demanda Biológica de Oxigênio , Hospitais
5.
Langmuir ; 39(51): 18846-18865, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095629

RESUMO

Retrieving the spent photocatalysts from the reaction system is always a challenging task. Therefore, the present work is focused on immobilizing sulfur-doped-Bi2O3/MnO2 (S-BOMO) heterojunction photocatalysts over different support matrices and evaluating their performance for the removal of sulfamethoxazole (SMX) in water under visible light. Our findings revealed S-BOMO coated clay beads (S-BOMO CCB) achieving more than 86% (240 min) SMX degradation ∼3, ∼1.3, and ∼2 times higher compared to S-BOMO coated on the different substrates, including glass beads, floating stones, and polymer material substrates, respectively. Mott-Schottky measurements confirmed the construction of the Z-scheme heterojunction involving MnO2 and 2S-Bi2O3. This Z-scheme mechanism, along with its narrow band gap of 1.58 eV, resulted in a rapid spatial transfer of the photogenerated charge carriers between the semiconductors and is believed to enhance the overall photocatalytic activity of the nanocomposite. Radical trapping and electron paramagnetic resonance results clearly established the active role of hydroxyl radicals and hydrogen peroxide in the degradation of SMX. Further, the 2S-BOMO CCB demonstrated excellent stability and photocatalytic activity over multiple runs. According to the sensitivity analysis and the results of anion effect experiments, phosphate and sulfate ions exhibit a significant impact on sulfamethoxazole degradation. Toxicity analysis revealed that 2S-BOMO CCB and sulfamethoxazole degradation byproducts were apparently innocuous. Additionally, the practical applicability of 2S-BOMO CCB was examined in various real water matrices, with the degradation efficiency followed the order: tap water < groundwater < surface water < hospital wastewater < municipal wastewater < pharmaceutical industry wastewater. The economic assessment revealed the reduction in the overall cost of the immobilized 2S-BOMO following the recovery process. Overall, the findings of this work provided critical insights into the synthesis and performance of incredibly effective and stable immobilized photocatalysts for the degradation of pharmaceutical pollutants.

6.
Curr Drug Metab ; 24(12): 787-802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38141188

RESUMO

BACKGROUND: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism. OBJECTIVE: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge. METHODS: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined. RESULTS: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy. CONCLUSION: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias/metabolismo , Transporte Biológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo
7.
Heliyon ; 9(11): e21575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027922

RESUMO

Improper disposal of waste poses a grave environmental threat, contributing to pollution of air, water, and soil. It is necessary to address this issue in order to mitigate the adverse effects of solid waste on both the environment and public health. In many developing nations, municipal authorities of bigger cities are enduring significant challenges in proper management of waste. The present study evaluates the impacts of various waste management alternative scenarios for environmental impacts for the selected study locations using Life Cycle Assessment (LCA) methodology. The methodology comprised of five different scenarios of waste management including an existing baseline scenario. In this context, the environmental impact categories analyzed were Global Warming potential (GWP), Acidification potential (AP), Eutrophication potential (EP) and Human Toxicity potential (HTP). The results indicated that amongst all the proposed scenarios, Scenario 1 and 4 exhibited the maximum and minimum environmental impacts respectively. The study revealed that least greenhouse gas emissions, acidification potential, eutrophication potential and human toxicity potential were comparatively lesser for scenario 4 varying from 5.65 to 11.36 kg CO2eq t-1; 1.24-3.345 kg SO2eq t-1, EP 0.19-0.68 kg PO4eq t-1, and 0.35-4.22 kg 1,4-DBeq t-1 respectively. Further, a sensitivity analysis was also performed to evaluate the influence of recycling rate of valuable resources in all the considered scenarios. The sensitivity analysis indicated an inversely proportional relation between change in recycling rate and total environmental burdens.

8.
J Environ Manage ; 344: 118686, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536238

RESUMO

Hospital wastewater management has become a significant concern across the globe due to the presence of pharmaceutically active compounds (PhACs) and other toxic substances, which can potentially disrupt ecosystems. The presence of recalcitrant PhACs in hospital wastewater increases the difficulty level for conventional wastewater treatment systems. Furthermore, incorporating advanced oxidation-based treatment systems increase capital and operation costs. To reduce treatment costs, low-cost innovative technology, i.e., composite constructed wetland and microbial fuel cell system (CMFC), has been developed for higher treatment efficiency of PhACs in hospital wastewater along with simultaneous bioelectricity generation as an additional outcome. In this study, influencing operating parameters, such as initial chemical oxygen demand (COD), electrode spacing, and substrate-to-water-depth ratio, were optimized for two plant species: water hyacinth (WH) and duckweed (DW). The optimized systems were run in batch and continuous mode for WH-CMFC and DW-CMFC to treat synthetic hospital wastewater with paracetamol and diclofenac, and the bioelectricity generation was monitored. DW-CMFC system depicted better treatment efficiency and voltage generation as compared to WH-CMFC. In continuous mode, the DW-CMFC system exhibited a removal of 95.3% COD, 97.1% paracetamol, and 87.5% diclofenac. WH-CMFC and DW-CMFC achieved power densities of around 21.26 mW/m2 and 42.93 mW/m2, respectively. The fate of PhACs during and after treatment and toxicity analysis of the transformation products formed were also carried out. Higher bio-electricity generation and efficient wastewater treatment of the DW-CMFC make it a sustainable option for hospital wastewater management.


Assuntos
Araceae , Fontes de Energia Bioelétrica , Águas Residuárias , Áreas Alagadas , Acetaminofen , Diclofenaco , Ecossistema , Eletricidade , Hospitais , Eletrodos
9.
Bioresour Technol ; 387: 129593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558100

RESUMO

This study investigated the successful synthesis of functionalized algal biochar-clay composite (FBKC). Subsequently, the sorption performance of FBKC towards norfloxacin (NFX) antibiotic and crystal violet dye (CVD) from water was extensively assessed in both batch and continuous flow systems. A series of characterization techniques were carried out for FBKC and the utilized precursors, indicating that the surface area of FBKC was increased thirty-fold with a well-developed pore structure compared to the original precursors. FBKC demonstrated a maximum sorption capacity of 192.80 and 281.24 mg/g for NFX and CVD, respectively. The suited fitting of the experimental data to Freundlich and Clark models suggested multi-layer sorption of NFX/CVD molecules. The mechanistic studies of NFX/CVD sorption onto FBKC unveiled multiple mechanisms, including π-π interaction, hydrogen bonding, electrostatic attraction, and surface/pore filling effect. The estimated cost of 5.72 €/kg and superior sorption capacity makes FBKC an efficient low-cost sorbent for emergent water pollutants.


Assuntos
Doenças Cardiovasculares , Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Argila , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Carvão Vegetal/química , Norfloxacino , Violeta Genciana
10.
J Environ Manage ; 345: 118649, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481881

RESUMO

Applications of sediment source fingerprinting continue to increase globally as the need for information to support improved management of the sediment problem persists. In our novel research, a Bayesian fingerprinting approach using MixSIAR was used with geochemical signatures, both without and with informative priors based on particle size and slope. The source estimates were compared with a newly proposed Source Sensitivity Index (SSI) and outputs from the INVEST-SDR model. MixSIAR results with informative priors indicated that agricultural and barren lands are the principal sediment sources (contributing ∼5-85% and ∼5-80% respectively during two sampling periods i.e. 2018-2019 and 2021-2022) with forests being less important. The SSI spatial maps (using % clay and slope as informative priors) showed >78% agreement with the spatial map derived using the INVEST-SDR model in terms of sub-catchment prioritization for spatial sediment source contributions. This study demonstrates the benefits of combining geochemical sediment source fingerprinting with SSI indices in larger catchments where the spatial prioritization of soil and water conservation is both challenging but warranted.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Teorema de Bayes , Solo , Agricultura
11.
J Hazard Mater ; 452: 131325, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058839

RESUMO

In this study, the functionalized smectitic clay (SC)-based nanoscale hydrated zirconium oxide (ZrO-SC) was successfully synthesized and utilized for the adsorptive removal of levofloxacin (LVN) from an aqueous medium. The synthesized ZrO-SC and its precursors (SC and hydrated zirconium oxide (ZrO(OH)2)) were extensively characterized using various analytical methods to get insight into their physicochemical properties. The results of stability investigation confirmed that ZrO-SC composite is chemically stable in strongly acidic medium. The surface measurements revealed that ZrO impregnation to SC resulted in an increased surface area (six-fold higher than SC). The maximum sorption capacity of ZrO-SC for LVN was 356.98 and 68.87 mg g-1 during batch and continuous flow mode studies, respectively. The mechanistic studies of LVN sorption onto ZrO-SC revealed that various sorption mechanisms, such as interlayer complexation, π-π interaction, electrostatic interaction, and surface complexation were involved. The kinetic studies of ZrO-SC in the continuous-flow mode indicated the better applicability of Thomas model. However, the good fitting of Clark model suggested the multi-layer sorption of LVN. The cost estimation of the studied sorbents was also assessed. The obtained results indicate that ZrO-SC is capable of removing LVN and other emergent pollutants from water at a reasonable cost.

12.
Chemosphere ; 327: 138503, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965534

RESUMO

In early January 2020, the causal agent of unspecified pneumonia cases detected in China and elsewhere was identified as a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was the major cause of the COVID-19 outbreak. Later, the World Health Organization (WHO) proclaimed the COVID-19 pandemic a worldwide public health emergency on January 30, 2020. Since then, many studies have been published on this topic. In the present study, bibliometric analysis has been performed to analyze the research hotspots of the coronavirus. Coronavirus transmission, detection methods, potential risks of infection, and effective management practices have been discussed in the present review. Identification and quantification of SARS-CoV-2 viral loads in various water matrices have been reviewed. It was observed that the viral shedding through urine and feces of COVID-19-infected patients might be a primary mode of SARS-CoV-2 transmission in water and wastewater. In this context, the present review highlights wastewater-based epidemiology (WBE)/sewage surveillance, which can be utilized as an effective tool for tracking the transmission of COVID-19. This review also emphasizes the role of different disinfection techniques, such as chlorination, ultraviolet irradiation, and ozonation, for the inactivation of coronavirus. In addition, the application of computational modeling methods has been discussed for the effective management of COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Pandemias/prevenção & controle , Águas Residuárias
13.
Bioresour Technol ; 371: 128641, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681347

RESUMO

A lab-scale integrated anoxic and oxic (A/O) moving bed biofilm reactor (MBBR) was investigated for the removal of organics and nutrients by varying chemical oxygen demand (COD) to NH4-N ratio (C/N ratio: 3.5, 6.75, and 10), hydraulic retention time (HRT: 6 h, 15 h, and 24 h), and recirculation ratio (R: 1, 2, and 3). The use of activated carbon coated carriers prepared from waste polyethylene material and polyurethane sponges attached to a cylindrical frame in the integrated A/O MBBR increased the attached growth biomass significantly. >95 % of COD removal was observed under the C/N ratio of 10 at an HRT of 24 h. While the low C/N ratio favored the removal of NH4-N (∼98 %) and PO43--P (∼90 %) with an optimal R of 1.75. Using the experimental dataset, to predict and forecast the performance of integrated A/O MBBR, a feed-forward-backpropagation-neural-network model was developed.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Biofilmes , Reatores Biológicos , Nitrogênio/análise , Resíduos , Redes Neurais de Computação , Desnitrificação
14.
J Environ Manage ; 325(Pt A): 116443, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228396

RESUMO

The shortage of water resources and generation of large quantum of wastewater has posed a significant concern to the environment and public health. Recent research on wastewater treatment has started to focus on reusing wastewater for different activities to reduce the stress on natural water resources. Constructed wetland (CWs) is a low-cost wastewater treatment option. However, some drawbacks include large areal requirements and the need for tertiary treatment units for reusable effluent. In this study, a novel composite baffled horizontal flow CW filter unit (BHFCW-FU) was developed to overcome the drawbacks of the conventional CW. The BHFCW-FU planted with Chrysopogon zizanioides provided a nine times longer flow path, and the adjoined variable depth dual media filter reduced the total area requirement and served as a polishing unit. On average, the BHFCW-FU with horizontal sub-surface flow regime could efficiently remove around 93.93%, 87.20%, and 66.25% of turbidity, phenol, and COD, respectively, from real petrochemical wastewater (initial turbidity: 29.6 NTU, phenol: 4.52 mg/L, and COD: 381 mg/L) and rendered the effluent quality reusable for irrigation, industrial, and other environmental purposes. In synthetic wastewater (initial turbidity: 754 NTU, phenol: 10.87 mg/L, and COD: 1691 mg/L), the removal efficiency of turbidity, phenol, and COD were 99.50%, 93.73%, and 87.05%, respectively. In-depth substrate characterization was done to study the removal mechanism. The developed BHFCW-FU required less space and maintenance, provided reusable effluent, and overcame the drawbacks of conventional CWs. Hence, it may show immense potential as an effective wastewater treatment.


Assuntos
Águas Residuárias , Purificação da Água , Águas Residuárias/análise , Áreas Alagadas , Eliminação de Resíduos Líquidos , Fenóis
15.
J Environ Manage ; 320: 115816, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932744

RESUMO

Urban water distribution networks (WDNs) in developing economies often refrain from investing in sensor-based leakage management technologies due to financial constraints and other techno-managerial issues. Thus, this study proposes a generalized decision support framework based on network sensitivity analysis (NSA) and multi-criteria decision-making (MCDM) to assess the prospect of effective leakage control through robust sensor placement in existing deficient WDNs. Four sensitivity parameters are formulated for NSA to ascertain the pressure response of the potential sensor positions for diverse hydraulic and leak scenarios. Subsequently, selecting the optimal number of sensors and their relative positions within the WDN is framed as an MCDM problem that entails the simultaneous maximization of Euclidean distances among the potential sensor positions and the leak-induced pressure residuals obtained at these sensors. The proposed methodology is developed on a numerical benchmark network assuming ideal conditions, and its applicability is verified on a sensor-equipped experimental network considering realistic system uncertainties. The outcome of this study aims to provide an insightful understanding of the system behavior that governs its leak localization potential and ascertain the practical challenges of sensor-based leakage monitoring in existing WDNs. Decision-makers of resource-strained utilities can beneficially utilize the proposed framework to assess the environmental and cost trade-offs of employing sensor-based technologies for leakage management and proactive decision-making before its actual implementation.


Assuntos
Abastecimento de Água , Água , Incerteza
16.
Am J Trop Med Hyg ; 107(4): 789-795, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36037866

RESUMO

Visceral leishmaniasis (VL) is a serious public health concern in the Indian state of Bihar, which has been exacerbated by an increasing HIV/AIDS incidence that has resulted in poor clinical outcomes. So far, there has been no investigation into the knowledge, attitude, and practices (KAP) of people who have been subjected to hospital-based supervision for VL or HIV/VL co-infection. This study assessed the KAP toward VL infection among 210 VL-infected patients (126 participants with VL and 84 participants with HIV/VL) using a pretested standard questionnaire. The findings are summarized descriptively and KAP scores are classified dichotomously (good/poor). Multivariable logistic regression and bivariate correlation were used in the analysis. The study showed that both VL-infected and co-infected patients exhibited similar deficits in KAP scores toward VL. The HIV/VL participants who had a personal or family history of VL were more likely to have appropriate awareness of and preventive practices toward VL. The independent predictors of attitude index in HIV/VL participants were education, VL family history, and marital status. There was a weak but significant positive correlation between knowledge and practice (rs = 0.321, p<0.001), and attitude and practice (rs = 0.294, p<0.001), while knowledge was strongly correlated with attitude (rs = 0.634, p<0.001). Based on the study findings, it is recommended that treatment programs in Bihar should concentrate on strengthening KAP among VL and HIV/VL co-infected patients to prevent reinfection-related complications. Behavior change communication intervention is ideal for tackling this problem. This proposal entails building a comprehensive public health program in endemic regions.


Assuntos
Coinfecção , Infecções por HIV , Leishmaniose Visceral , Leishmaniose , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Índia/epidemiologia , Leishmaniose Visceral/complicações , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/epidemiologia
17.
J Environ Manage ; 317: 115305, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642808

RESUMO

Industrial wastewater discharge has increased manifolds over the last few decades. Efficient industrial wastewater treatment is mandatory to meet stringent discharge regulations. Biological treatment systems, such as the sequencing batch reactor (SBR) are generally employed for domestic wastewater treatment. However, low infrastructure and energy requirements, as well as low footprint, make SBR a prominent technique to treat industrial wastewater. In the present review, the feasibility of SBR to treat wastewater generated from industries, such as textile, pulp and paper, pharmaceutical, tannery, etc., has been discussed. The factors affecting the treatment efficacy of the SBR in terms of organics and nutrient removal have also been investigated. It has been observed that the SBR system is effective for industrial wastewater treatment as it is easy to operate, resistant to shock loads, and can retain high biomass concentrations. The modifications to the conventional SBR, such as sludge granulation, the addition of bio-film carriers, and the incorporation of adsorbents, salt-tolerant microbes, and coagulants have been discussed. Further, various novel combinations of SBR with the other advanced treatment technologies, such as Fenton, membrane-based process, and electrochemical process have shown enhanced removal of various conventional and recalcitrant pollutants. The current review also accentuates the sustainability aspects of SBR technology to treat industrial wastewater which may be beneficial for researchers and engineers working in this field.


Assuntos
Águas Residuárias , Purificação da Água , Reatores Biológicos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos
18.
J Environ Manage ; 315: 115143, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504184

RESUMO

The global concern of the pollution of freshwater resources is associated with faecal sludge (FS) disposal, which is an inevitable component of onsite wastewater management mostly in developing countries. The difficulties with its treatment facilities lies in its higher organic content and low dewaterability of various available treatment systems. Moreover, the higher variability in characteristics and quantity of FS generated at different locations creates hindrances in designing the treatment system. Among the several treatment options, the constructed wetlands (CW) are an organic/green approach towards sanitation of FS with low cost and higher efficiency. The present study is an in-depth literature review on the quality and quantity of FS and septage (stabilized FS) in different regions attributed to the wide variability of its characteristics. This paper highlights the treatment of FS in different systems with a special emphasis on CW systems. Different mechanisms and factors affecting the FS treatment efficacy in CW, such as DO/aeration, macrophytes, substrate, CW configuration, and other environmental parameters, have been studied meticulously. The cost analysis revealed CW to be an economic system, and it can enable hybridization with other technologies to develop a complete treatment system with pronounced efficiencies. Several process modifications, such as augmentation with aeration, recirculation, micro-organisms, and earthworms, can enhance the treatment efficacies of CWs. The present review exhibited that the widely used plant species is Phragmites, and the optimum solid loading rate (SLR) range is 50-250 kg TS/m2/yr. The various factors to construct an optimized CW system for FS treatment were attempted, which may bolster the necessary guidelines for field-scale applications.


Assuntos
Esgotos , Áreas Alagadas , Fezes , Saneamento , Eliminação de Resíduos Líquidos , Águas Residuárias
19.
J Environ Manage ; 308: 114609, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101807

RESUMO

Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, ß-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.


Assuntos
COVID-19 , Eliminação de Resíduos de Serviços de Saúde , Hospitais , Humanos , Eliminação de Resíduos de Serviços de Saúde/métodos , Pandemias , Medição de Risco , SARS-CoV-2 , Águas Residuárias/análise
20.
J Environ Manage ; 306: 114461, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032942

RESUMO

In order to enhance the performance and sustainability of wastewater treatment technologies, researchers are showing keen interest in the development of novel materials which can overcome the drawbacks associated with conventional materials. In this context, 3D printing gained significant attention due to its capability of fabricating complex geometrics using different material compositions. The present review focuses on recent advancements of 3D printing applications in various physicochemical and biological wastewater treatment techniques. In physicochemical treatment methods, substantial research has been aimed at fabricating feed spacers and other membrane parts, photocatalytic feed spacers, catalysts, scaffolds, monoliths, and capsules. Several advantages, such as membrane fouling mitigation, enhanced degradation efficiency, and recovery and reusability potential, have been associated with the aforementioned 3D printed materials. While in biofilm-based biological treatment methods, the use of 3D printed bio-carriers has led to enhanced mass transfer efficiency and microbial activities. Moreover, the application of these bio-carriers has shown better removal efficiency of chemical oxygen demand (∼90%), total nitrogen (∼73%), ammonia nitrogen (95%), and total phosphorous (∼100%). Although the removal efficiencies were comparable with conventional carriers, 3D printed carriers led to ∼40% reduction in hydraulic retention time, which could significantly save capital and operational expenditures. This review also emphasizes the challenges and sustainability aspects of 3D printing technology and outlines future recommendations which could be vital for further research in this field.


Assuntos
Purificação da Água , Catálise , Impressão Tridimensional , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA