Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nature ; 625(7995): 585-592, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200309

RESUMO

Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS-STING-mediated signalling and tumour suppression1-3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4-10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11-RAD50-NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1-RIPK3-MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation of ZBP1 in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.


Assuntos
Transformação Celular Neoplásica , Proteína Homóloga a MRE11 , Nucleossomos , Nucleotidiltransferases , Humanos , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Dano ao DNA , Proteína Homóloga a MRE11/metabolismo , Necroptose , Nucleossomos/metabolismo , Nucleotidiltransferases/metabolismo , Radiação Ionizante , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Instabilidade Genômica
2.
Breast Cancer Res ; 26(1): 20, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297352

RESUMO

BACKGROUND: Patients with inflammatory breast cancer (IBC) have overall poor clinical outcomes, with triple-negative IBC (TN-IBC) being associated with the worst survival, warranting the investigation of novel therapies. Preclinical studies implied that ruxolitinib (RUX), a JAK1/2 inhibitor, may be an effective therapy for TN-IBC. METHODS: We conducted a randomized phase II study with nested window-of-opportunity in TN-IBC. Treatment-naïve patients received a 7-day run-in of RUX alone or RUX plus paclitaxel (PAC). After the run-in, those who received RUX alone proceeded to neoadjuvant therapy with either RUX + PAC or PAC alone for 12 weeks; those who had received RUX + PAC continued treatment for 12 weeks. All patients subsequently received 4 cycles of doxorubicin plus cyclophosphamide prior to surgery. Research tumor biopsies were performed at baseline (pre-run-in) and after run-in therapy. Tumors were evaluated for phosphorylated STAT3 (pSTAT3) by immunostaining, and a subset was also analyzed by RNA-seq. The primary endpoint was the percent of pSTAT3-positive pre-run-in tumors that became pSTAT3-negative. Secondary endpoints included pathologic complete response (pCR). RESULTS: Overall, 23 patients were enrolled, of whom 21 completed preoperative therapy. Two patients achieved pCR (8.7%). pSTAT3 and IL-6/JAK/STAT3 signaling decreased in post-run-in biopsies of RUX-treated samples, while sustained treatment with RUX + PAC upregulated IL-6/JAK/STAT3 signaling compared to RUX alone. Both treatments decreased GZMB+ T cells implying immune suppression. RUX alone effectively inhibited JAK/STAT3 signaling but its combination with PAC led to incomplete inhibition. The immune suppressive effects of RUX alone and in combination may negate its growth inhibitory effects on cancer cells. CONCLUSION: In summary, the use of RUX in TN-IBC was associated with a decrease in pSTAT3 levels despite lack of clinical benefit. Cancer cell-specific-targeting of JAK2/STAT3 or combinations with immunotherapy may be required for further evaluation of JAK2/STAT3 signaling as a cancer therapeutic target. TRIAL REGISTRATION: www. CLINICALTRIALS: gov , NCT02876302. Registered 23 August 2016.


Assuntos
Neoplasias Inflamatórias Mamárias , Nitrilas , Paclitaxel , Pirazóis , Pirimidinas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Neoplasias Inflamatórias Mamárias/patologia , Interleucina-6 , Terapia Neoadjuvante , Nitrilas/uso terapêutico , Paclitaxel/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
4.
J Mol Biol ; 436(4): 168424, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159716

RESUMO

Genomic stability relies on a multifaceted and evolutionarily conserved DNA damage response (DDR). In multicellular organisms, an integral facet of the DDR involves the activation of the immune system to eliminate cells with persistent DNA damage. Recent research has shed light on a complex array of nucleic acid sensors crucial for innate immune activation in response to oncogenic stress-associated DNA damage, a process vital for suppressing tumor formation. Yet, these immune sensing pathways may also be co-opted to foster tolerance of chromosomal instability, thereby driving cancer progression. This review aims to provide an updated overview of how the innate immune system detects and responds to DNA damage. An improved understanding of the regulatory intricacies governing this immune response may uncover new avenues for cancer prevention and therapeutic intervention.


Assuntos
Dano ao DNA , Reconhecimento da Imunidade Inata , Neoplasias , Humanos , Dano ao DNA/imunologia , Reparo do DNA , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia
5.
Nat Commun ; 14(1): 7714, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001070

RESUMO

Homologous recombination (HR)-deficiency induces a dependency on DNA polymerase theta (Polθ/Polq)-mediated end joining, and Polθ inhibitors (Polθi) are in development for cancer therapy. BRCA1 and BRCA2 deficient cells are thought to be synthetic lethal with Polθ, but whether distinct HR gene mutations give rise to equivalent Polθ-dependence, and the events that drive lethality, are unclear. In this study, we utilized mouse models with separate Brca1 functional defects to mechanistically define Brca1-Polθ synthetic lethality. Surprisingly, homozygous Brca1 mutant, Polq-/- cells were viable, but grew slowly and had chromosomal instability. Brca1 mutant cells proficient in DNA end resection were significantly more dependent on Polθ for viability; here, treatment with Polθi elevated RPA foci, which persisted through mitosis. In an isogenic system, BRCA1 null cells were defective, but PALB2 and BRCA2 mutant cells exhibited active resection, and consequently stronger sensitivity to Polθi. Thus, DNA end resection is a critical determinant of Polθi sensitivity in HR-deficient cells, and should be considered when selecting patients for clinical studies.


Assuntos
Proteína BRCA1 , Genes BRCA2 , Camundongos , Animais , Humanos , Proteína BRCA1/genética , Mutação , Mutações Sintéticas Letais , DNA
6.
Nature ; 623(7988): 836-841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968395

RESUMO

Timely repair of chromosomal double-strand breaks is required for genome integrity and cellular viability. The polymerase theta-mediated end joining pathway has an important role in resolving these breaks and is essential in cancers defective in other DNA repair pathways, thus making it an emerging therapeutic target1. It requires annealing of 2-6 nucleotides of complementary sequence, microhomologies, that are adjacent to the broken ends, followed by initiation of end-bridging DNA synthesis by polymerase θ. However, the other pathway steps remain inadequately defined, and the enzymes required for them are unknown. Here we demonstrate requirements for exonucleolytic digestion of unpaired 3' tails before polymerase θ can initiate synthesis, then a switch to a more accurate, processive and strand-displacing polymerase to complete repair. We show the replicative polymerase, polymerase δ, is required for both steps; its 3' to 5' exonuclease activity for flap trimming, then its polymerase activity for extension and completion of repair. The enzymatic steps that are essential and specific to this pathway are mediated by two separate, sequential engagements of the two polymerases. The requisite coupling of these steps together is likely to be facilitated by physical association of the two polymerases. This pairing of polymerase δ with a polymerase capable of end-bridging synthesis, polymerase θ, may help to explain why the normally high-fidelity polymerase δ participates in genome destabilizing processes such as mitotic DNA synthesis2 and microhomology-mediated break-induced replication3.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Polimerase III , DNA Polimerase Dirigida por DNA , DNA/biossíntese , DNA/química , DNA/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica , DNA Polimerase teta
7.
J Med Chem ; 66(20): 14133-14149, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37782247

RESUMO

Methyl-lysine reader p53 binding protein 1 (53BP1) is a central mediator of DNA break repair and is associated with various human diseases, including cancer. Thus, high-quality 53BP1 chemical probes can aid in further understanding the role of 53BP1 in genome repair pathways. Herein, we utilized focused DNA-encoded library screening to identify the novel hit compound UNC8531, which binds the 53BP1 tandem Tudor domain (TTD) with an IC50 of 0.47 ± 0.09 µM in a TR-FRET assay and Kd values of 0.85 ± 0.17 and 0.79 ± 0.52 µM in ITC and SPR, respectively. UNC8531 was cocrystallized with the 53BP1 TTD to guide further optimization efforts, leading to UNC9512. NanoBRET and 53BP1-dependent foci formation experiments confirmed cellular target engagement. These results show that UNC9512 is a best-in-class small molecule 53BP1 antagonist that can aid further studies investigating the role of 53BP1 in DNA repair, gene editing, and oncogenesis.


Assuntos
Reparo do DNA , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Domínio Tudor
9.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259920

RESUMO

Deficiencies in homologous recombination (HR) repair lead to an accumulation of DNA damage and can predispose individuals to cancer. Polymerase theta (Pol θ, encoded by POLQ) is overexpressed by HR-deficient cancers and promotes cancer cell survival by mediating error-prone double-stranded break (DSB) repair and facilitating resistance against poly-ADP ribose polymerase inhibitor treatment. In this issue of the JCI, Oh, Wang, et al. report on the impact of Pol θ inhibition on activation of antitumor immunity. The authors used pancreatic ductal adenocarcinoma (PDAC) cell and mouse models characterized by HR-associated gene alterations and POLQ overexpression. POLQ knockdown showed synthetic lethality in combination with gene mutations involving DNA repair, including BRCA1, BRCA2, and ATM. Notably, Pol θ deficiency or inhibition suppressed tumor growth, increased the accumulation of unrepaired DNA damage, and enhanced T cell infiltration via the cGAS/STING pathway. These findings suggest a broader scope for Pol θ inhibition in HR-deficient cancers.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias , Animais , Camundongos , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Reparo de DNA por Recombinação , Neoplasias/genética
10.
Am J Clin Pathol ; 160(3): 314-321, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244060

RESUMO

OBJECTIVES: Accurate monitoring of disease burden depends on accurate disease marker quantification. Although next-generation sequencing (NGS) is a promising technology for noninvasive monitoring, plasma cell-free DNA levels are often reported in misleading units that are confounded by non-disease-related factors. We proposed a novel strategy for calibrating NGS assays using spiked normalizers to improve precision and to promote standardization and harmonization of analyte concentrations. METHODS: In this study, we refined our NGS protocol to calculate absolute analyte concentrations to (1) adjust for assay efficiency, as judged by recovery of spiked synthetic normalizer DNAs, and (2) calibrate NGS values against droplet digital polymerase chain reaction (ddPCR). As a model target, we chose the Epstein-Barr virus (EBV) genome. In patient (n = 12) and mock (n = 12) plasmas, NGS and 2 EBV ddPCR assays were used to report EBV load in copies per mL of plasma. RESULTS: Next-generation sequencing was equally sensitive to ddPCR, with improved linearity when NGS values were normalized for spiked DNA read counts (R2 = 0.95 for normalized vs 0.91 for raw read concentrations). Linearity permitted NGS calibration to each ddPCR assay, achieving equivalent concentrations (copies/mL). CONCLUSIONS: Our novel strategy for calibrating NGS assays suggests potential for a universal reference material to overcome biological and preanalytical variables hindering traditional NGS strategies for quantifying disease burden.


Assuntos
Ácidos Nucleicos Livres , Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4/genética , Calibragem , Sequenciamento de Nucleotídeos em Larga Escala/métodos
11.
Sci Adv ; 9(9): eadd9818, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857450

RESUMO

Spatial transcriptomics (ST) technology, providing spatially resolved transcriptional profiles, facilitates advanced understanding of key biological processes related to health and disease. Sequencing-based ST technologies provide whole-transcriptome profiles but are limited by the non-single cell-level resolution. Lack of knowledge in the number of cells or cell type composition at each spot can lead to invalid downstream analysis, which is a critical issue recognized in ST data analysis. Methods developed, however, tend to underuse histological images, which conceptually provide important and complementary information including anatomical structure and distribution of cells. To fill in the gaps, we present POLARIS, a versatile ST analysis method that can perform cell type deconvolution, identify anatomical or functional layer-wise differentially expressed (LDE) genes, and enable cell composition inference from histology images. Applied to four tissues, POLARIS demonstrates high deconvolution accuracy, accurately predicts cell composition solely from images, and identifies LDE genes that are biologically relevant and meaningful.


Assuntos
Perfilação da Expressão Gênica , Tecnologia , Análise Espacial
12.
Blood ; 141(19): 2372-2389, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580665

RESUMO

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Assuntos
Proteína BRCA1 , Dano ao DNA , Leucemia , Animais , Camundongos , Proteína BRCA2 , DNA/metabolismo , Leucemia/enzimologia , Leucemia/genética , DNA Polimerase teta
13.
Cancer Cell ; 40(12): 1521-1536.e7, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400020

RESUMO

Ductal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), with variable propensity for progression. We perform multiscale, integrated molecular profiling of DCIS with clinical outcomes by analyzing 774 DCIS samples from 542 patients with 7.3 years median follow-up from the Translational Breast Cancer Research Consortium 038 study and the Resource of Archival Breast Tissue cohorts. We identify 812 genes associated with ipsilateral recurrence within 5 years from treatment and develop a classifier that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence include proliferation, immune response, and metabolism. Distinct stromal expression patterns and immune cell compositions are identified. Our multiscale approach employed in situ methods to generate a spatially resolved atlas of breast precancers, where complementary modalities can be directly compared and correlated with conventional pathology findings, disease states, and clinical outcome.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Progressão da Doença , Neoplasias da Mama/patologia , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
15.
Oral Oncol ; 134: 106131, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191480

RESUMO

PURPOSE/OBJECTIVE(S): Accurate diagnosis of human papillomavirus (HPV) status in oropharyngeal squamous cell carcinoma (OPSCC) affects prognosis and can alter the treatment plan. We evaluated the diagnostic accuracy of FNA biopsies to determine malignancy and HPV status in OPSCC at our institution. METHODS: Pathology samples from consecutive patients with pathologically confirmed HPV-associated OPSCC who underwent FNA of a cervical lymph node during initial diagnostic work-up were retrospectively analyzed between November 2015 and August 2021. RESULTS: Initial FNA was diagnostic for malignancy in 109/148 (73.6%) patients and non-diagnostic in 39/148 (26.4%). P16 staining of FNAs positive for malignancy showed: 54/109 (49.5%) p16 positive, 6/109 (5.5%) p16 negative, 49/109 (45.0%) p16 indeterminate. In patients with an initial non-diagnostic sampling or p16 indeterminate, repeat FNA was performed in 30/88 (34.1%) patients. Of the 30 repeat FNAs: 23/30 (76.7%) were diagnostic of malignancy and 7/30 (23.3%) remained non-diagnostic for malignancy. Of the 23 repeat FNAs diagnostic of malignancy: 16/23 (69.6%) were p16 positive and 7/23 (30.4%) were p16 indeterminate. In summary, 88/148 (59.5%) initial FNAs and 14/30 (46.7%) of repeat FNAs were non-diagnostic of malignancy or p16 indeterminate. Final yield of FNA biopsies (initial and first repeat FNA) to diagnose malignancy and p16 status was 70/148 (47.3%). CONCLUSIONS: Fine needle aspirations of lymph nodes in patients with HPV-associated OPSCC are frequently non-diagnostic for malignancy or indeterminate for p16 status, requiring repeat FNA or biopsy of the primary site. This can potentially cause treatment delay and increase morbidity and cost to the patient.


Assuntos
Alphapapillomavirus , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Biópsia por Agulha Fina , Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias de Cabeça e Pescoço/complicações , Humanos , Neoplasias Orofaríngeas/patologia , Papillomaviridae , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/patologia , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações
16.
Cancer Res Commun ; 2(9): 987-1004, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36148399

RESUMO

Over 70% of oropharyngeal head and neck squamous cell carcinoma (HNSC) cases in the United States are positive for human papillomavirus (HPV) yet biomarkers for stratifying oropharyngeal head and neck squamous cell carcinoma (HNSC) patient risk are limited. We used immunogenomics to identify differentially expressed genes in immune cells of HPV(+) and HPV(-) squamous carcinomas. Candidate genes were tested in clinical specimens using both quantitative RT-PCR and IHC and validated by IHC using the Carolina Head and Neck Cancer Study (CHANCE) tissue microarray of HNSC cases. We performed multiplex immunofluorescent staining to confirm expression within the immune cells of HPV(+) tumors, receiver operating characteristic (ROC) curve analyses, and assessed survival outcomes. The neuronal gene Synaptogyrin-3 (SYNGR3) is robustly expressed in immune cells of HPV(+) squamous cancers. Multiplex immunostaining and single cell RNA-seq analyses confirmed SYNGR3 expression in T cells, but also unexpectedly in B cells of HPV(+) tumors. ROC curve analyses revealed that combining SYNGR3 and p16 provides more sensitivity and specificity for HPV detection compared to p16 IHC alone. SYNGR3-high HNSC patients have significantly better prognosis with five-year OS and DSS rates of 60% and 71%, respectively. Moreover, combining p16 localization and SYNGR3 expression can further risk stratify HPV(+) patients such that high cytoplasmic, low nuclear p16 do significantly worse (Hazard Ratio, 8.6; P = 0.032) compared to patients with high cytoplasmic, high nuclear p16. SYNGR3 expression in T and B cells is associated with HPV status and enhanced survival outcomes of HNSC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Sinaptogirinas
17.
Cancer Epidemiol Biomarkers Prev ; 31(12): 2136-2147, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129803

RESUMO

BACKGROUND: Aberrant expression of DNA repair pathways such as homologous recombination (HR) can lead to DNA repair imbalance, genomic instability, and altered chemotherapy response. DNA repair imbalance may predict prognosis, but variation in DNA repair in diverse cohorts of breast cancer patients is understudied. METHODS: To identify RNA-based patterns of DNA repair expression, we performed unsupervised clustering on 51 DNA repair-related genes in the Cancer Genome Atlas Breast Cancer [TCGA BRCA (n = 1,094)] and Carolina Breast Cancer Study [CBCS (n = 1,461)]. Using published DNA-based HR deficiency (HRD) scores (high-HRD ≥ 42) from TCGA, we trained an RNA-based supervised classifier. Unsupervised and supervised HRD classifiers were evaluated in association with demographics, tumor characteristics, and clinical outcomes. RESULTS: : Unsupervised clustering on DNA repair genes identified four clusters of breast tumors, with one group having high expression of HR genes. Approximately 39.7% of CBCS and 29.3% of TCGA breast tumors had this unsupervised high-HRD (U-HRD) profile. A supervised HRD classifier (S-HRD) trained on TCGA had 84% sensitivity and 73% specificity to detect HRD-high samples. Both U-HRD and S-HRD tumors in CBCS had higher frequency of TP53 mutant-like status (45% and 41% enrichment) and basal-like subtype (63% and 58% enrichment). S-HRD high was more common among black patients. Among chemotherapy-treated participants, recurrence was associated with S-HRD high (HR: 2.38, 95% confidence interval = 1.50-3.78). CONCLUSIONS: HRD is associated with poor prognosis and enriched in the tumors of black women. IMPACT: RNA-level indicators of HRD are predictive of breast cancer outcomes in diverse populations.


Assuntos
Proteína BRCA1 , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Proteína BRCA1/genética , Neoplasias de Mama Triplo Negativas/metabolismo , RNA/uso terapêutico , Recombinação Homóloga , Prognóstico
18.
Nat Commun ; 13(1): 4547, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927262

RESUMO

The DNA polymerase theta (Polθ)-mediated end joining (TMEJ) pathway for repair of chromosomal double strand breaks (DSBs) is essential in cells deficient in other DSB repair pathways, including hereditary breast cancers defective in homologous recombination. Strand-break activated poly(ADP) ribose polymerase 1 (PARP1) has been implicated in TMEJ, but the modest specificity of existing TMEJ assays means the extent of effect and the mechanism behind it remain unclear. We describe here a series of TMEJ assays with improved specificity and show ablation of PARP activity reduces TMEJ activity 2-4-fold. The reduction in TMEJ is attributable to a reduction in the 5' to 3' resection of DSB ends that is essential for engagement of this pathway and is compensated by increased repair by the nonhomologous-end joining pathway. This limited role for PARP activity in TMEJ helps better rationalize the combined employment of inhibitors of PARP and Polθ in cancer therapy.


Assuntos
Poli(ADP-Ribose) Polimerases , Ribose , Difosfato de Adenosina , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Reparo do DNA , DNA Polimerase Dirigida por DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , DNA Polimerase teta
19.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881485

RESUMO

Acquired mutations in the ligand-binding domain (LBD) of the gene encoding estrogen receptor α (ESR1) are common mechanisms of endocrine therapy resistance in patients with metastatic ER+ breast cancer. The ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1,200 Federal Drug Administration-approved (FDA-approved) drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib + fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with WT cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant-induced endocrine therapy resistance in breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Humanos , Mutação , Domínios Proteicos , Transcrição Gênica
20.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35753702

RESUMO

Spatial transcriptomics (ST) technologies allow researchers to examine transcriptional profiles along with maintained positional information. Such spatially resolved transcriptional characterization of intact tissue samples provides an integrated view of gene expression in its natural spatial and functional context. However, high-throughput sequencing-based ST technologies cannot yet reach single cell resolution. Thus, similar to bulk RNA-seq data, gene expression data at ST spot-level reflect transcriptional profiles of multiple cells and entail the inference of cell-type composition within each ST spot for valid and powerful subsequent analyses. Realizing the critical importance of cell-type decomposition, multiple groups have developed ST deconvolution methods. The aim of this work is to review state-of-the-art methods for ST deconvolution, comparing their strengths and weaknesses. In particular, we construct ST spots from single-cell level ST data to assess the performance of 10 methods, with either ideal reference or non-ideal reference. Furthermore, we examine the performance of these methods on spot- and bead-level ST data by comparing estimated cell-type proportions to carefully matched single-cell ST data. In comparing the performance on various tissues and technological platforms, we concluded that RCTD and stereoscope achieve more robust and accurate inferences.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA