Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35055257

RESUMO

Phytopharmaceuticals have been widely used globally since ancient times and acknowledged by healthcare professionals and patients for their superior therapeutic value and fewer side-effects compared to modern medicines. However, phytopharmaceuticals need a scientific and methodical approach to deliver their components and thereby improve patient compliance and treatment adherence. Dose reduction, improved bioavailability, receptor selective binding, and targeted delivery of phytopharmaceuticals can be likely achieved by molding them into specific nano-formulations. In recent decades, nanotechnology-based phytopharmaceuticals have emerged as potential therapeutic candidates for the treatment of various communicable and non-communicable diseases. Nanotechnology combined with phytopharmaceuticals broadens the therapeutic perspective and overcomes problems associated with plant medicine. The current review highlights the therapeutic application of various nano-phytopharmaceuticals in neurological, cardiovascular, pulmonary, and gastro-intestinal disorders. We conclude that nano-phytopharmaceuticals emerge as promising therapeutics for many pathological conditions with good compliance and higher acceptance.

2.
J Biomed Mater Res A ; 102(8): 2600-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24038786

RESUMO

Hybrid nanofibers of poly(lactic acid) and polycaprolactone have been developed by embedding cancerous drug through electrospinning technique. The composition of polymer has been varied to check the compositional effect on properties. The quality of nanofibers has been testified through surface morphology, wetting properties using contact angle and mechanical strength under uniaxial elongation. The compatibility of drug (5-fluorourasil) with matrix fiber has been verified using Fourier transform infrared, X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry. The drug release study has been performed showing greater release in hybrid fibers when compared with pure polymers as a result of synergism of two immiscible polymers and quasi-Fickian diffusion mechanism in hybrid nanofiber as implants showing compositional effect on drug release. A model has been proposed showing faster release of drugs in hybrid systems. Biological responses through fluorescence imaging and MTT assay confirm the release of drug from hybrid nanofibers showing potential use of hybrid scaffolds as chemotherapeutic implant.


Assuntos
Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Implantes Experimentais , Poliésteres/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Varredura Diferencial de Calorimetria , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cristalização , Fluoruracila/química , Humanos , Nanofibras/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Estresse Mecânico , Difração de Raios X
3.
J Int Soc Prev Community Dent ; 3(1): 32-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24478978

RESUMO

BACKGROUND: The documentation of magnitude of malocclusion in terms of prevalence and severity has not been done till date in Himachal Pradesh, India. AIMS: To assess the prevalence of malocclusion and orthodontic treatment needs (OTNs) among 9-and 12-year-old school children by using the Dental Aesthetic Index (DAI) in the state. MATERIALS AND METHODS: A cross-sectional study was conducted among 1188 children from randomly selected schools. The survey was done according to the Oral Health Assessment Form (modified). DAI was used to assess the severity of malocclusion, along with collection of demographic data. RESULTS: The overall prevalence of malocclusion was 12.5% and required orthodontic treatment, whereas 87.5% did not require treatment. A severe malocclusion for which treatment was highly desirable was recorded in 3.1%; 8% had a definite malocclusion for which treatment was elective. Only about 1.3% had a handicapping malocclusion that needed mandatory treatment. Almost equal proportions of males and females were affected with malocclusion with the means 20 ± 4.6 and 19.9 ± 4.9, respectively (P < 0.641). The prevalence and severity of malocclusion was more in 12-year age group than in 9-year age group (P = 0.002**). There was an increase in the proportion of malocclusion among older children: In 12-year age group, 15.7% with mean 20.5 ± 5.1 and in 9-year-old children, 8.9% with the mean 19.3 ± 4.1 were in the need of orthodontic treatment. CONCLUSION: Severity and treatment needs, both are important factors in public health planning.

4.
Phys Chem Chem Phys ; 14(37): 12844-53, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22890196

RESUMO

TiO(2) nanoparticles of different phases play a key role in property alteration of nanocomposite fibers. Polycaprolactone (PCL)/TiO(2) composite fibers were prepared using the electrospinning method. Pure anatase and rutile phases were synthesized using the sol-gel route for nanocomposite synthesis. The Effect of nanoparticle phases on crystallinity of fibers and interaction with polymer molecules have been studied using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, morphology through SEM, surface properties using BET method and wetting property of fibers commencing from contact angle measurement. Biocompatibility and biodegradation of hybrid materials have been studied in simulated body fluid (SBF) and phosphate buffer (PBS), respectively. The anatase phase with smaller particle dimensions exhibited significant improvement of most of the properties as compared to composites made of the rutile phase. Better interaction between polymer chain and anatase particle PCL-A nanocomposite fibers leads to better mechanical property and biocompatibility vis-à-vis PCL-R and pristine PCL fibers. Biocompatibility of PCL nanocomposite has been testified through proliferation of fibroblast cell and its adhesion; MTT (3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay demonstrates good proliferation rate for cells on PCL-A nanocomposite fibres.


Assuntos
Nanopartículas Metálicas/química , Poliésteres/química , Titânio/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Nanofibras/química , Nanofibras/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA