Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancer Lett ; 544: 215801, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35732216

RESUMO

Delivery of therapeutic agents in pancreatic cancer (PC) is impaired due to its hypovascular and desmoplastic tumor microenvironment. The Endothelin (ET)-axis is the major regulator of vasomotor tone under physiological conditions and is highly upregulated in multiple cancers. We investigated the effect of dual endothelin receptor antagonist bosentan on perfusion and macromolecular transport in a PC cell-fibroblast co-implantation tumor model using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI). Following bosentan treatment, the contrast enhancement ratio and wash-in rates in tumors were two- and nine times higher, respectively, compared to the controls, whereas the time to peak was significantly shorter (7.29 ± 1.29 min v/s 22.08 ± 5.88 min; p = 0.04). Importantly, these effects were tumor selective as the magnitudes of change for these parameters were much lower in muscles. Bosentan treatment also reduced desmoplasia and improved intratumoral distribution of high molecular weight FITC-dextran. Overall, these findings support that targeting the ET-axis can serve as a potential strategy to selectively enhance tumor perfusion and improve the delivery of therapeutic agents in pancreatic tumors.


Assuntos
Antagonistas dos Receptores de Endotelina , Neoplasias Pancreáticas , Bosentana , Antagonistas dos Receptores de Endotelina/farmacologia , Antagonistas dos Receptores de Endotelina/uso terapêutico , Endotelinas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Perfusão , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Dev Cell ; 56(13): 1989-2006.e6, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118203

RESUMO

Oncogenes can alter metabolism by changing the balance between anabolic and catabolic processes. However, how oncogenes regulate tumor cell biomass remains poorly understood. Using isogenic MCF10A cells transformed with nine different oncogenes, we show that specific oncogenes reduce the biomass of cancer cells by promoting extracellular vesicle (EV) release. While MYC and AURKB elicited the highest number of EVs, each oncogene selectively altered the protein composition of released EVs. Likewise, oncogenes alter secreted miRNAs. MYC-overexpressing cells require ceramide, whereas AURKB requires ESCRT to release high levels of EVs. We identify an inverse relationship between MYC upregulation and activation of the RAS/MEK/ERK signaling pathway for regulating EV release in some tumor cells. Finally, lysosome genes and activity are downregulated in the context of MYC and AURKB, suggesting that cellular contents, instead of being degraded, were released via EVs. Thus, oncogene-mediated biomass regulation via differential EV release is a new metabolic phenotype.


Assuntos
Aurora Quinase B/genética , Vesículas Extracelulares/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogênicas c-myc/genética , Metabolismo Energético/genética , Vesículas Extracelulares/genética , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Humanos , Lisossomos/genética , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Metabolismo/genética , Transdução de Sinais/genética
3.
Nat Cell Biol ; 23(3): 232-242, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33686253

RESUMO

Lysosomes must maintain the integrity of their limiting membrane to ensure efficient fusion with incoming organelles and degradation of substrates within their lumen. Pancreatic cancer cells upregulate lysosomal biogenesis to enhance nutrient recycling and stress resistance, but it is unknown whether dedicated programmes for maintaining the integrity of the lysosome membrane facilitate pancreatic cancer growth. Using proteomic-based organelle profiling, we identify the Ferlin family plasma membrane repair factor Myoferlin as selectively and highly enriched on the membrane of pancreatic cancer lysosomes. Mechanistically, lysosomal localization of Myoferlin is necessary and sufficient for the maintenance of lysosome health and provides an early acting protective system against membrane damage that is independent of the endosomal sorting complex required for transport (ESCRT)-mediated repair network. Myoferlin is upregulated in human pancreatic cancer, predicts poor survival and its ablation severely impairs lysosome function and tumour growth in vivo. Thus, retargeting of plasma membrane repair factors enhances the pro-oncogenic activities of the lysosome.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Biomarcadores Tumorais/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Membranas Intracelulares/patologia , Lisossomos/genética , Lisossomos/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Transdução de Sinais , Carga Tumoral
4.
Nature ; 581(7806): 100-105, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376951

RESUMO

Immune evasion is a major obstacle for cancer treatment. Common mechanisms of evasion include impaired antigen presentation caused by mutations or loss of heterozygosity of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy1-3. However, in pancreatic ductal adenocarcinoma (PDAC), which is resistant to most therapies including ICB4, mutations that cause loss of MHC-I are rarely found5 despite the frequent downregulation of MHC-I expression6-8. Here we show that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation by an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced expression of MHC-I at the cell surface and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, inhibition of autophagy restores surface levels of MHC-I and leads to improved antigen presentation, enhanced anti-tumour T cell responses and reduced tumour growth in syngeneic host mice. Accordingly, the anti-tumour effects of autophagy inhibition are reversed by depleting CD8+ T cells or reducing surface expression of MHC-I. Inhibition of autophagy, either genetically or pharmacologically with chloroquine, synergizes with dual ICB therapy (anti-PD1 and anti-CTLA4 antibodies), and leads to an enhanced anti-tumour immune response. Our findings demonstrate a role for enhanced autophagy or lysosome function in immune evasion by selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB therapy as a therapeutic strategy against PDAC.


Assuntos
Adenocarcinoma/imunologia , Autofagia/imunologia , Carcinoma Ductal Pancreático/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias Pancreáticas/imunologia , Evasão Tumoral/imunologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Evasão Tumoral/efeitos dos fármacos
5.
Neoplasia ; 22(2): 98-110, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31923844

RESUMO

Endothelin-1 (ET-1) and its two receptors, endothelin receptor A (ETAR) and endothelin receptor B (ETBR) exhibit deregulated overexprerssion in pancreatic ductal adenocarcinoma (PDAC) and pancreatitis. We examined the expression pattern of endothelin (ET) axis components in the murine models of chronic and acute inflammation in the presence or absence of oncogenic K-ras. While the expression of endothelin converting enzyme-1 (ECE-1), ET-1, ETAR and ETBR in the normal pancreas is restricted predominantly to the islet cells, progressive increase of ET receptors in ductal cells and stromal compartment is observed in the KC model (Pdx-1 Cre; K-rasG12D) of PDAC. In the murine pancreas harboring K-rasG12D mutation (KC mice), following acute inflammation induced by cerulein, increased ETAR and ETBR expression is observed in the amylase and CK19 double positive cells that represent cells undergoing pancreatic acinar to ductal metaplasia (ADM). As compared to the wild type (WT) mice, cerulein treatment in KC mice resulted in significantly higher levels of ECE-1, ET-1, ETAR and ETBR, transcripts in the pancreas. Similarly, in response to cigarette smoke-induced chronic inflammation, the expression of ET axis components is significantly upregulated in the pancreas of KC mice as compared to the WT mice. In addition to the expression in the precursor pancreatic intraepithelial neoplasm (PanIN lesions) in cigarette smoke-exposure model and metaplastic ducts in cerulein-treatment model, ETAR and ETBR expression is also observed in infiltrating F4/80 positive macrophages and α-SMA positive fibroblasts and high co-localization was seen in the presence of oncogenic K-ras. In conclusion, both chronic and acute pancreatic inflammation in the presence of oncogenic K-ras contribute to sustained upregulation of ET axis components in the ductal and stromal cells suggesting a potential role of ET axis in the initiation and progression of PDAC.


Assuntos
Endotelina-1/genética , Inflamação/genética , Neoplasias Pancreáticas/genética , Pancreatite/genética , Receptor de Endotelina A/genética , Receptor de Endotelina B/genética , Amilases/genética , Animais , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Enzimas Conversoras de Endotelina/genética , Regulação da Expressão Gênica/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Camundongos , Oncogenes/genética , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Oncotarget ; 8(13): 20961-20973, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423495

RESUMO

The dismal prognosis of locally advanced and metastatic squamous cell carcinoma of the head and neck (HNSCC) is primarily due to the development of resistance to chemoradiation therapy (CRT). Deregulation of Epidermal Growth Factor Receptor (EGFR) signaling is involved in HNSCC pathogenesis by regulating cell survival, cancer stem cells (CSCs), and resistance to CRT. Here we investigated the radiosensitizing activity of the pan-EGFR inhibitor afatinib in HNSCC in vitro and in vivo. Our results showed strong antiproliferative effects of afatinib in HNSCC SCC1 and SCC10B cells, compared to immortalized normal oral epithelial cells MOE1a and MOE1b. Comparative analysis revealed stronger antitumor effects with afatinib than observed with erlotinib. Furthermore, afatinib enhanced in vitro radiosensitivity of SCC1 and SCC10B cells by inducing mesenchymal to epithelial transition, G1 cell cycle arrest, and the attenuating ionizing radiation (IR)-induced activation of DNA double strand break repair (DSB) ATM/ATR/CHK2/BRCA1 pathway. Our studies also revealed the effect of afatinib on tumor sphere- and colony-forming capabilities of cancer stem cells (CSCs), and decreased IR-induced CSC population in SCC1 and SCC10B cells. Furthermore, we observed that a combination of afatinib with IR significantly reduced SCC1 xenograft tumors (median weight of 168.25 ± 20.85 mg; p = 0.05) compared to afatinib (280.07 ± 20.54 mg) or IR alone (324.91 ± 28.08 mg). Immunohistochemical analysis of SCC1 tumor xenografts demonstrated downregulation of the expression of IR-induced pEGFR1, ALDH1 and upregulation of phosphorylated γH2AX by afatinib. Overall, afatinib reduces tumorigenicity and radiosensitizes HNSCC cells. It holds promise for future clinical development as a novel radiosensitizer by improving CSC eradication.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinazolinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Afatinib , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Genes Cancer ; 7(3-4): 110-124, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27382435

RESUMO

MUC16, a heavily glycosylated type-I transmembrane mucin is overexpressed in several cancers including pancreatic ductal adenocarcinoma (PDAC). Previously, we have shown that MUC16 is significantly overexpressed in human PDAC tissues. However, the functional consequences and its role in PDAC is poorly understood. Here, we show that MUC16 knockdown decreases PDAC cell proliferation, colony formation and migration in vitro. Also, MUC16 knockdown decreases the tumor formation and metastasis in orthotopic xenograft mouse model. Mechanistically, immunoprecipitation and immunofluorescence analyses confirms MUC16 interaction with galectin-3 and mesothelin in PDAC cells. Adhesion assay displayed decreased cell attachment of MUC16 knockdown cells with recombinant galectin-1 and galectin-3 protein. Further, CRISPR/Cas9-mediated MUC16 knockout cells show decreased tumor-associated carbohydrate antigens (T and Tn) in PDAC cells. Importantly, carbohydrate antigens were decreased in the region that corresponds to MUC16 and suggests for the decreased MUC16-galectin interactions. Co-immunoprecipitation also revealed a novel interaction between MUC16 and FAK in PDAC cells. Interestingly, we observed decreased expression of mesenchymal and increased expression of epithelial markers in MUC16-silenced cells. Additionally, MUC16 loss showed a decreased FAK-mediated Akt and ERK/MAPK activation. Altogether, these findings suggest that MUC16-focal adhesion signaling may play a critical role in facilitating PDAC growth and metastasis.

8.
Oncotarget ; 6(25): 21085-99, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26035354

RESUMO

Several studies have demonstrated that MUC4 is involved in progression and metastasis of pancreatic cancer (PC). Here, we report that HER3/MUC4 interaction in HER2 low cells is critical in driving pancreatic tumorigenesis. Upon HER2 knockdown, we observed elevated expression of HER3 and MUC4 and their interactions, which was confirmed by immunoprecipitation and bioinformatics analyses. In paired human PC tissues, higher percentage of HER3 positivity (10/33, 30.3%; p = 0.001) was observed than HER2 (5/33, 15.1%; p = 0.031), which was further confirmed in spontaneous mice (KPC; KrasG12D; Trp53R172H/+; Pdx-Cre) tumors of different weeks. Mechanistically, increased phosphorylation of ERK and expression of PI3K and c-Myc were observed in HER2 knockdown cells, suggesting a positive role for HER3/MUC4 in HER2 low cells. Further, HER2 knockdown resulted in increased proliferation, motility and tumorigenicity of PC cells. Consistently, transient knockdown of HER3 by siRNA in HER2 knockdown cells led to decreased proliferation. These observations led us to conclude that HER3 interacts with MUC4 to promote proliferation in HER2 low PC cells. Further, deficiency of both HER2 and HER3 leads to decreased proliferation of PC cells. Hence targeting these newly identified HER3/MUC4 signals would improve the PC patients survival by intercepting MUC4 mediated oncogenic signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mucina-4/metabolismo , Neoplasias Pancreáticas/patologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Sequência de Aminoácidos , Animais , Carcinogênese , Ciclo Celular , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
9.
Methods Mol Biol ; 1141: 147-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567137

RESUMO

Antibodies have been conjugated to radionuclides for various in vitro and in vivo applications. Radiolabeled antibodies have been used in clinics and research for diagnostic applications both in vitro as reagents in bioassays and in vivo as imaging agents. Further, radiolabeled antibodies are used as direct therapeutic agents for cancer radioimmunotherapy or as tracers for studying the pharmacokinetics and biodistribution of therapeutic antibodies. Antibodies are labeled with radiohalogens or radiometals, and the choice of candidate radionuclides for a given application is dictated by their emission range and half-life. The conjugation chemistry for the coupling of MAbs with the radiometals requires a chelator, whereas radiohalogens can be incorporated directly in the antibody backbone. In this chapter, we describe the commonly used methods for radiolabeling and characterizing the antibodies most commonly used radiohalogens (125I/131I) and radiometals (177Lu/99mTc).


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Radioisótopos do Iodo/química , Marcação por Isótopo/métodos , Lutécio/química , Pertecnetato Tc 99m de Sódio/química , Imunoconjugados/química , Niacinamida/análogos & derivados , Niacinamida/química , Compostos Radiofarmacêuticos , Succinimidas/química
10.
Cancer Lett ; 341(2): 166-77, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23920124

RESUMO

Inadequate efficacy, high toxicity and drug resistance associated with existing chemotherapeutic agents mandate a need for novel therapeutic strategies for highly aggressive Pancreatic Cancer (PC). Guggulsterone (GS) exhibits potent anti-proliferative effects against various cancer cells and has emerged as an attractive candidate for use in complementary or preventive cancer therapies. However, the knowledge regarding the therapeutic potential of GS in PC is still limited and needs to be explored. We studied the effect of GS on PC cell growth, motility and invasion and elucidated the molecular mechanisms associated with its anti-tumor effects. Treatment of Capan1 and CD18/HPAF PC cells with GS resulted in dose- and time-dependent growth inhibition and decreased colony formation. Further, GS treatment induced apoptosis and cell cycle arrest as assessed by Annexin-V assay and FACS analysis. Increased apoptosis following GS treatment was accompanied with Bad dephosphorylation and its translocation to the mitochondria, increased Caspase-3 activation, decreased Cyclin D1, Bcl-2 and xIAP expression. Additionally, GS treatment decreased motility and invasion of PC cells by disrupting cytoskeletal organization, inhibiting activation of FAK and Src signaling and decreased MMP9 expression. More importantly, GS treatment decreased mucin MUC4 expression in Capan1 and CD18/HPAF cells through transcriptional regulation by inhibiting Jak/STAT pathway. In conclusion, our results support the utility of GS as a potential therapeutic agent for lethal PC.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Janus Quinases/metabolismo , Pregnenodionas/farmacologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Quinase 1 de Adesão Focal/genética , Humanos , Immunoblotting , Isoenzimas/genética , Isoenzimas/metabolismo , Janus Quinases/genética , Microscopia Confocal , Mucina-4/genética , Mucina-4/metabolismo , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição STAT/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo , Quinases da Família src/genética
11.
Cancer Biother Radiopharm ; 28(9): 639-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23844555

RESUMO

Due to its ability to target both known and occult lesions, radioimmunotherapy (RIT) is an attractive therapeutic modality for solid tumors. Poor tumor uptake and undesirable pharmacokinetics, however, have precluded the administration of radioimmunoconjugates at therapeutically relevant doses thereby limiting the clinical utility of RIT. In solid tumors, efficacy of RIT is further compromised by heterogeneities in blood flow, tumor stroma, expression of target antigens and radioresistance. As a result significant efforts have been invested toward developing strategies to overcome these impediments. Further, there is an emerging interest in exploiting short-range, high energy α-particle emitting radionuclides for the eradication of minimal residual and micrometastatic disease. As a result several modalities for localized therapy and models of minimal disease have been developed for preclinical evaluation. This review provides a brief update on the recent efforts toward improving the efficacy of RIT for solid tumors, and development of RIT strategies for minimal disease associated with solid tumors. Further, some of promising approaches to improve tumor targeting, which showed promise in the past, but have now been ignored are also discussed.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Radioimunoterapia/métodos , Radioimunoterapia/tendências , Partículas alfa , Animais , Anticorpos Monoclonais/administração & dosagem , Modelos Animais de Doenças , Humanos , Imunoconjugados/uso terapêutico , Neoplasia Residual , Peritônio/efeitos da radiação , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA