Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Pharmacol Toxicol ; 21(1): 78, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203457

RESUMO

BACKGROUND: Plants provide a ray of hope to combat the ever increasing antibiotic resistance and Symplocos racemosa is a valuable medicinal plant. The study focused on highlighting the importance of this plant's phytoconstituents as potential source of novel antimicrobials against planktonic as well as biofilm forming microorganisms, along with their antiproliferative activity. The biosafety of the phytoconstituents was also established, followed by detection of probable antimicrobial components. METHODS: The best organic extractant and major groups of phytoconstituents were tested for their antimicrobial activity against reference microbial strains and drug-resistant clinical isolates. The anti-proliferative potential of the most active group of phytoconstituents was evaluated against cancerous cell lines. The in vitro biosafety of phytoconstituents was evaluated by Ames and MTT assay, while in vivo biosafety of the most active phytoconstituents, i.e., flavonoids was determined by acute oral toxicity. Further, the probable antimicrobial components in the flavonoids were detected by TLC and GC-MS. RESULTS: Ethyl acetate extract was the most effective among various organic extracts, whereas phytoconstituents such as flavonoids, cardiac glycosides, saponins, tannins, triterpenes and phytosterols were the major groups present, with flavonoids being the most potent antimicrobials. The phytoconstituents displayed a significant antibiofilm potential, as exhibited by inhibition of initial cell attachment, disruption of the pre-formed biofilms and reduced metabolic activity of biofilms. The phytoconstituents were significantly active against the drug-resistant strains of E.coli, MRSA and Salmonella spp. Further, flavonoids showed significant cytotoxic effect against the cancerous cell lines but were non-cytotoxic against Vero (normal) cell line. All the test preparations were biosafe, as depicted by the Ames test and MTT assay. Also, flavonoids did not induce any abnormality in body weight, clinical signs, biochemical parameters and organs' histopathology of the Swiss albino mice during in vivo acute oral toxicity studies. The flavonoids were resolved into 4 bands (S1-S4), where S3 was the most active and its GC-MS analysis revealed the presence of a number of compounds, where Bicyclo [2.2.1]heptan-2-one,1,7,7-trimethyl-, (1S)- was the most abundant. CONCLUSIONS: These findings suggest that the phytoconstituents from Symplocos racemosa bark could act as potential source of antimicrobial as well as antiproliferative metabolites.


Assuntos
Anti-Infecciosos/farmacologia , Bioprospecção/métodos , Proliferação de Células/efeitos dos fármacos , Contenção de Riscos Biológicos/métodos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Infecciosos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Proliferação de Células/fisiologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana/métodos , Compostos Fitoquímicos/isolamento & purificação , Casca de Planta , Extratos Vegetais/isolamento & purificação
2.
AMB Express ; 9(1): 143, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31512002

RESUMO

Berberis aristata is an important part of traditional healing system from more than 2500 years. The aqueous extract of Berberis aristata root bark displayed broad spectrum activity against 13 test pathogens, ranging from 12 to 25 mm. In classical optimization, 15% concentration prepared at 40 °C for 40 min was optimal and thermostable. Statistical optimization enhanced the activity by 1.13-1.30-folds. Ethyl acetate was the best organic solvent to elute out the potential compound responsible for antimicrobial activity. Diterpenes were the most abundant phytoconstituent (15.3%) and showed broad spectrum antimicrobial activity ranging from 16.66 to 42.66 mm. Ethyl acetate extract displayed the lowest minimum inhibitory concentration (0.05-1 mg/mL), followed by diterpenes (0.05-5 mg/mL) and flavonoids (0.05-10 mg/mL). The test extracts were microbicidal in nature and showed a prolonged post antibiotic effect ranging from 2 to 8 h. They were found to be biosafe as per Ames and MTT assay. The in vitro cytotoxicity evaluation of diterpenes against L20B, RD and Hep 2 cell lines revealed its IC50 ranging from 245 to 473 µg/mL. Acute oral toxicity of diterpenes on Swiss albino mice did not show any changes in behavioral pattern, body weight, biochemical parameters as well as organs' architecture. The study thus indicates B. aristata could be a potential candidate for development of potent drug owing to its antimicrobial potential and biosafe profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA