Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Lett ; 16(21): 5592-5, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25337806

RESUMO

The hexameric capsules of pyrogallol[4]arene (2b) were prepared in nondeuterated solvents in the absence and presence of adamantane carboxylic acid (3). The small encapsulated molecules were shown to occupy different sites within the same capsule. In the presence of 3, which are also encapsulated in the hexameric capsules, one observes yet another pair of signals for the encapsulated solvent molecules. Different NMR experiments enabled assignment of the different sites within the hexameric capsules of 2b.

2.
Langmuir ; 28(5): 2604-13, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22191627

RESUMO

Like-charged solid interfaces repel and separate from one another as much as possible. Charged interfaces composed of self-assembled charged-molecules such as lipids or proteins are ubiquitous. The present study shows that although charged lipid-membranes are sufficiently rigid, in order to swell as much as possible, they deviate markedly from the behavior of typical like-charged solids when diluted below a critical concentration (ca. 15 wt %). Unexpectedly, they swell into lamellar structures with spacing that is up to four times shorter than the layers should assume (if filling the entire available space). This process is reversible with respect to changing the lipid concentration. Additionally, the research shows that, although the repulsion between charged interfaces increases with temperature, like-charged membranes, remarkably, condense with increasing temperature. This effect is also shown to be reversible. Our findings hold for a wide range of conditions including varying membrane charge density, bending rigidity, salt concentration, and conditions of typical living systems. We attribute the limited swelling and condensation of the net repulsive interfaces to their self-assembled character. Unlike solids, membranes can rearrange to gain an effective entropic attraction, which increases with temperature and compensates for the work required for condensing the bilayers. Our findings provide new insight into the thermodynamics and self-organization of like-charged interfaces composed of self-assembled molecules such as charged biomaterials and supramolecular assemblies that are widely found in synthetic and natural constructs.


Assuntos
Entropia , Bicamadas Lipídicas/química , Lipídeos/síntese química , Lipídeos/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA