Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 6(9): 5024-5031, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455295

RESUMO

Acquired drug resistance is a common occurrence and the main cause of melanoma treatment failure. Melanoma cells frequently developed resistance against cisplatin during chemotherapy, and thus, targeting delivery systems have been devised to decrease drug resistance, increase therapeutic efficacy, and reduce side effects. We genetically engineered a macromolecular carrier using the recursive directional ligation method that specifically targets cisplatin-resistant (Cis-R) melanoma. This carrier is composed of an elastin-like polypeptide (ELP) and multiple copies of Cis-R melanoma-targeting ligands (M-peptide). The designed M16E108 contains 16 targeting ligands incorporated within an ELP and has an ideal thermal phase transition at 39 °C. When treated to melanoma cells, M16E108 specifically accumulated in Cis-R B16F10 melanoma cells and accumulated to a lesser extent in parental B16F10 cells. Consistently, M16E108 exhibited efficient homing and longer retention in tumor tissues in Cis-R melanoma-bearing mice than in parental B16F10 melanoma-bearing mice. Thus, M16E108 was found to display considerable potential as a novel agent that specifically targets cisplatin-resistant melanoma.


Assuntos
Elastina , Melanoma , Animais , Cisplatino/farmacologia , Elastina/genética , Ligantes , Melanoma/tratamento farmacológico , Camundongos , Peptídeos
2.
Biomaterials ; 159: 161-173, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29329051

RESUMO

Adoptive transfer of cytotoxic T lymphocytes (CTLs) has been used as an immunotherapy in melanoma. However, the tumor homing and therapeutic efficacy of transferred CTLs against melanoma remain unsatisfactory. Interleukin-4 receptor (IL-4R) is commonly up-regulated in tumors including melanoma. Here, we studied whether IL-4R-targeted CTLs exhibit enhanced tumor homing and therapeutic efficacy against melanoma. CTLs isolated from mice bearing melanomas were non-genetically engineered with IL4RPep-1, an IL-4R-binding peptide, using a membrane anchor composed of dioleylphosphatidylethanolamine. Compared to control CTLs, IL-4R-targeted CTLs showed higher binding to melanoma cells and in vivo tumor homing. They also exerted a more rapid and robust effector response, including increased cytokine secretion and cytotoxicity against melanoma cells and enhanced reprogramming of M2-type macrophages to M1-type macrophages. Moreover, IL-4R-targeted CTLs efficiently inhibited melanoma growth and reversed the immunosuppressive tumor microenvironment. These results suggest that non-genetically engineered CTLs targeting IL-4R have potential as an adoptive T cell therapy against melanoma.


Assuntos
Citocinas/metabolismo , Melanoma/metabolismo , Receptores de Interleucina-4/metabolismo , Linfócitos T Citotóxicos/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo
3.
Biomaterials ; 142: 101-111, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28732245

RESUMO

IL-4 receptor (IL-4R) is commonly up-regulated on tumor cells, and interactions between the receptor and Interleukin-4 (IL-4) can induce the expression of anti-apoptotic proteins, including Bcl-xL. This contributes to tumor cell survival and their resistance to chemotherapy. In this study, we exploited IL-4R-targeted delivery of Bcl-xL siRNA to IL-4R-expressing tumor cells in order to sensitize them to chemotherapy. To target IL-4R, an IL-4R-binding peptide, IL4RPep-1, was attached to branched polyethyleneimine-superparamagnetic iron oxide nanoparticles (BPEI-SPION). These nanoparticles were then complexed with Bcl-xL-targeting siRNA. IL-4R-targeted BPEI-SPION/Bcl-xL siRNA more efficiently reduced Bcl-xL gene expression and enhanced cytotoxicity of doxorubicin in MDA-MB231 breast tumor cells compared to untargeted BPEI-SPION/Bcl-xL siRNA. The siRNA was released from the complexes after 15 h of incubation at pH 5.5 and was stable in the complexes up to 72 h in the serum. The IL-4R-targeted BPEI-SPION/siRNA was internalized by cells through IL-4R, successfully escaped the endosomes, and was dispersed into the cytoplasm. Near-infrared fluorescence and magnetic resonance imaging demonstrated that in vivo tumor homing and accumulation of IL-4R-targeted BPEI-SPION/siRNA were both higher than untargeted BPEI-SPION/siRNA. The IL-4R-targeted BPEI-SPION/Bcl-xL siRNA, in combination with doxorubicin, significantly inhibited tumor growth in mice compared to untargeted BPEI-SPION/Bcl-xL siRNA. These results suggest that the IL-4R-targeted delivery of Bcl-xL siRNA to IL-4R-expressing tumors can sensitize tumors to chemotherapy and enhance the efficacy of anti-tumor therapeutics.


Assuntos
Técnicas de Transferência de Genes , Neoplasias/tratamento farmacológico , Neoplasias/patologia , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina-4/metabolismo , Proteína bcl-X/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Tamanho da Partícula , Polietilenoimina/síntese química , Polietilenoimina/química , Eletricidade Estática
4.
Anal Sci ; 31(7): 699-704, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26165294

RESUMO

In this study, a simple, highly sensitive electrochemical biosensor for myoglobin was developed using a myoglobin-specific binding peptide as a sensing probe. A peptide (Myo-3R7, CPSTLGASC, 838 Da) identified by phage display and that specifically binds to myoglobin was covalently immobilized on a gold electrode functionalized via a dithiobis(succinimidyl propionate) (DSP) self-assembled monolayer (SAM). The peptide immobilization was confirmed with fluorescence microarray scanning and cyclic voltammetry (CV). The electrochemical performance of the biosensor with respect to myoglobin was characterized by CV and differential pulse voltammetry (DPV) using Fe(CN)6(3-)/Fe(CN)6(4-) as a redox probe. We successfully detected myoglobin in a broad working range of 17.8 to 1780 ng mL(-1) with a correlation coefficient (R(2)) of 0.998. The estimated limit of detection (LOD) was fairly low, 9.8 ng mL(-1) in 30 min. The electrochemical biosensor based on a myoglobin-specific binding peptide offers sensitivity, selectivity, and rapidity, making it an attractive tool for the early detection of cardiac infarction.


Assuntos
Técnicas Biossensoriais/métodos , Infarto do Miocárdio/diagnóstico , Mioglobina/metabolismo , Oligopeptídeos/metabolismo , Doença Aguda , Sequência de Aminoácidos , Diagnóstico Precoce , Eletroquímica , Ferricianetos/química , Ouro/química , Humanos , Limite de Detecção , Modelos Moleculares , Mioglobina/química , Oligopeptídeos/química , Conformação Proteica , Especificidade por Substrato , Succinimidas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA